5,611 research outputs found

    Entanglement criterion via general symmetric informationally complete measurements

    Full text link
    We study the quantum separability problem by using general symmetric informationally complete measurements and present a separability criterion for arbitrary dimensional bipartite systems. We show by detailed examples that our criterion is more powerful than the existing ones in entanglement detection.Comment: 8 pages, 5 figure

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Collectibility for Mixed Quantum States

    Full text link
    Bounds analogous to entropic uncertainty relations allow one to design practical tests to detect quantum entanglement by a collective measurement performed on several copies of the state analyzed. This approach, initially worked out for pure states only [Phys. Rev. Lett. 107, 150502 (2011)], is extended here for mixed quantum states. We define collectibility for any mixed states of a multipartite system. Deriving bounds for collectibility for positive partially transposed states of given purity provides a new insight into the structure of entangled quantum states. In case of two qubits the application of complementary measurements and coincidence based detections leads to a new test of entanglement of pseudopure states.Comment: 13 page

    Quantum interactive proofs and the complexity of separability testing

    Get PDF
    We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.Comment: v2: 43 pages, 5 figures, completely rewritten and in Theory of Computing (ToC) journal forma

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Partial separability and entanglement criteria for multiqubit quantum states

    Full text link
    We explore the subtle relationships between partial separability and entanglement of subsystems in multiqubit quantum states and give experimentally accessible conditions that distinguish between various classes and levels of partial separability in a hierarchical order. These conditions take the form of bounds on the correlations of locally orthogonal observables. Violations of such inequalities give strong sufficient criteria for various forms of partial inseparability and multiqubit entanglement. The strength of these criteria is illustrated by showing that they are stronger than several other well-known entanglement criteria (the fidelity criterion, violation of Mermin-type separability inequalities, the Laskowski-\.Zukowski criterion and the D\"ur-Cirac criterion), and also by showing their great noise robustness for a variety of multiqubit states, including N-qubit GHZ states and Dicke states. Furthermore, for N greater than or equal to 3 they can detect bound entangled states. For all these states, the required number of measurement settings for implementation of the entanglement criteria is shown to be only N+1. If one chooses the familiar Pauli matrices as single-qubit observables, the inequalities take the form of bounds on the anti-diagonal matrix elements of a state in terms of its diagonal matrix elements.Comment: 25 pages, 3 figures. v4: published versio
    corecore