157 research outputs found

    Use of remote sensing in landscape-scale vegetation degradation assessment in the semi- arid areas of the Save catchment, Zimbabwe.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.The deteriorating condition of land in parts of the world is negatively affecting livelihoods, especially, in rural communities of the developing world. Zimbabwe has experienced significant vegetation cover losses, particularly, in low and varied rainfall areas of the Save catchment. The concern that Save catchment is undergoing huge vegetation losses has been largely expressed, with the causes being environmental and anthropogenic. Given the magnitude of the problem, research studies have been undertaken to assess the extent of the problem in the south eastern region of Zimbabwe, which, nevertheless, have been mainly localized. The present study seeks to identify and quantify vegetation degradation at a landscape scale in the Save catchment of Zimbabwe, using remote sensing technologies. To achieve this, two objectives were set. The first objective provided a review of the application of satellite earth observations in assessing vegetation degradation, the causes, as well as associated impacts at different geographical scales. A review of literature has revealed the effectiveness of satellite information in identifying changes in vegetation condition. A second objective sought to establish the extent of vegetation degradation in the Save catchment. Moderate Resolution Imaging Spectroradiometer- Normalised Difference Vegetation Index (MODIS NDVI) datasets were used for mapping NDVI trends over the period 2000-2015. Further analysis involved application of residual trend (RESTREND) method to separate human influences from climatic signal on vegetation degradation. RESTREND results showed an increasing trend in NDVI values in about 33.6% of the Save catchment and a decreasing trend in about 18.3% from 2000 to 2015. The results of the study revealed that about 3,609,955 hectares experienced significant human induced vegetation degradation. Approximately 38.8% of the Save Catchment was significantly degraded (p< 0.05), 3.6%, 12.8%, and 22.4% of which were classified as severely, moderately, and lightly degraded, respectively. Severe degradation was mainly found in the central districts of the Save Catchment, mainly Bikita, Chipinge and northern Chiredzi. The results of this study support earlier reports about ongoing degradation in the catchment. Vegetation changes observed across the landscape revealed different degrees of the impacts of land use activities in altering the terrestrial ecosystems. The study demonstrated the usefulness of the RESTREND method in identifying vegetation loss due to human actions in very low rainfall areas

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Vegetation monitoring through retrieval of NDVI and LST time series from historical databases.

    Get PDF
    The PhD dissertation presented here falls into the Earth Observation field, specifically vegetation monitoring. This work consists in the extensive exploitation of historical databases of satellite images for vegetation monitoring through two parameters, which are the land surface temperature (LST) and a vegetation index (NDVI). Up to now, vegetation monitoring has been limited to the use of vegetation indices, so the addition of the land surface temperature parameter represents the main innovative character of this PhD study. This dissertation is divided into 5 chapters. The first chapter begins by introducing the theoretical aspects of NDVI and LST parameters, addressing the means for retrieving them from remotely sensed observations, as well as their main limitations. Then, an introduction to vegetal physiology is developed, which allows for understanding how NDVI and LST parameters are linked to plants. A bibliographical study is then presented, which stresses out the gaps in the exploitation of historical databases. The second describes the data used in this PhD. The instrument providing most of these data is embarked on the NOAA (National Oceanic and Atmospheric Administration) satellite series. This instrument is the AVHRR (Advanced Very High Resolution Radiometer). The AVHRR databases used in this work are the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) databases. Additional data used punctually are also described briefly. The third chapter describes the operations applied to the data to prepare their temporal analysis. These operations start with the calculations of vegetation index and land surface temperature parameters. The AVHRR data used in this work are contaminated by the orbital drift of NOAA satellites, so an important part of this doctorate consisted in developing a technique for correcting this effect. We chose to develop our own technique, which we validated by direct comparison with data retrieved by geostationary satellites. In the fourth chapter, the different methods used for data temporal analysis are presented. Those methods consist of trend detection, harmonic analysis, and fitting the temporal series to annual NDVI evolution curves. Then, a phenological analysis is presented, which allows for retrieval of trends in spring and autumn dates for most of the globe. These trends are validated by comparison with previous studies. The trend analysis for spring dates is then extended to the 1948-2006 period using air temperature data. The long-term observation of different NDVI indicators also allows for the detection of land vegetation changes, even in our case of coarse spatial resolution. Finally, two methods for NDVI temporal analysis are compared. In the fifth chapter, a quick presentation of simultaneous study of NDVI and LST is developed through a revision of previous results, followed by the observations carried out from the orbital drift corrected data. These observations allowed for the determination of indicators of NDVI and LST, thus enabling for the characterization of the vegetation at global scale. A harmonic analysis of NDVI and LST at European scale is also presented. The application of the developed indicators for simultaneous monitoring of NDVI and LST shows promising results. As a conclusion, the main results described above are summarized, and plans for a close future are presented. This PhD has also demonstrated that such work could be carried out in a small structure with limited resources. __________________________________________________________________________________________________ RESUMEN El trabajo de tesis doctoral aquí presentado consiste en el uso extensivo de bases de datos históricas de imágenes de satélite para el seguimiento de la vegetación terrestre, a través de dos parámetros; la temperatura de la superficie terrestre (LST por sus siglas en inglés) y el índice de vegetación NDVI. El primer capítulo de la memoria introduce las nociones de NDVI y LST desde una perspectiva teórica, así como sus principales limitaciones y sus vínculos con la fisiología vegetal. Un estudio bibliográfico permite poner el acento sobre las lagunas en el uso de las bases de datos históricas. El segundo capítulo describe los datos utilizados en este trabajo, proporcionados en su mayoría por el instrumento AVHRR (Advanced Very High Resolution Radiometer) a bordo de la serie de satélites de la NOAA (National Oceanic and Atmospheric Administration) a través de las bases de datos PAL (Pathfinder AVHRR Land) y GIMMS (Global Inventory Modeling and Mapping Studies). También se presentan datos adicionales que se usaron puntualmente. El tercer capítulo describe el proceso para obtener las series temporales de NDVI y LST, las cuales están contaminadas por la deriva orbital de los satélites NOAA. Hemos propuesto una técnica propia para su corrección, validada por comparación directa con datos obtenidos por satélites geoestacionarios. En el cuarto capítulo se introducen diferentes métodos utilizados para el análisis temporal de los datos. Se obtuvieron tendencias acerca de parámetros vinculados a la evolución anual de NDVI para la mayor parte del globo, validadas por comparación con estudios previos. En el quinto capítulo se presenta un análisis conjunto del NDVI y de la LST, seguido por la elaboración de indicadores de la evolución anual de estos dos parámetros. A continuación se presenta un análisis armónico del NDVI y de la LST para Europa. El uso de los indicadores desarrollados para el seguimiento simultáneo del NDVI y de la LST revela resultados prometedores. Por último se presentan las conclusiones más relevantes del trabajo realizado, así como planes de trabajo para un futuro próximo

    Earth resources: A continuing bibliography with indexes (issue 62)

    Get PDF
    This bibliography lists 544 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography with indexes (issue 60)

    Get PDF
    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors

    Empirical approach to satellite snow detection

    Get PDF
    Lumipeitteellä on huomattava vaikutus säähän, ilmastoon, luontoon ja yhteiskuntaan. Pelkästään sääasemilla tehtävät lumihavainnot (lumen syvyys ja maanpinnan laatu) eivät anna kattavaa kuvaa lumen peittävyydestä tai muista lumipeitteen ominaisuuksista. Sääasemien tuottamia havaintoja voidaan täydentää satelliiteista tehtävillä havainnoilla. Geostationaariset sääsatelliitit tuottavat havaintoja tihein välein, mutta havaintoresoluutio on heikko monilla alueilla, joilla esiintyy kausittaista lunta. Polaariradoilla sääsatelliittien havaintoresoluutio on napa-alueiden läheisyydessä huomattavasti parempi, mutta silloinkaan satelliitit eivät tuota jatkuvaa havaintopeittoa. Tiheimmän havaintoresoluution tuottavat sääsatelliittiradiometrit, jotka toimivat optisilla aallonpituuksilla (näkyvä valo ja infrapuna). Lumipeitteen kaukokartoitusta satelliiteista vaikeuttavat lumipeitteen oman vaihtelun lisäksi pinnan ominaisuuksien vaihtelu (kasvillisuus, vesistöt, topografia) ja valaistusolojen vaihtelu. Epävarma ja osittain puutteellinen tieto pinnan ja kasvipeitteen ominaisuuksista vaikeuttaa luotettavan automaattisen analyyttisen lumentunnistusmenetelmän kehittämistä ja siksi empiirinen lähestymistapa saattaa olla toimivin vaihtoehto automaattista lumentunnistusmenetelmää kehitettäessä. Tässä työssä esitellään kaksi EUMETSATin osittain rahoittamassa H SAFissa kehitettyä lumituotetta ja niissä käytetyt empiiristä lähestymistapaa soveltaen kehitetyt algoritmit. Geostationaarinen MSG/SEVIRI H31 lumituote on saatavilla vuodesta 2008 alkaen ja polaarituote Metop/AVHRR H32 vuodesta 2015 alkaen. Lisäksi esitellään pintahavaintoihin perustuvat validointitulokset, jotka osoittavat tuotteiden saavuttavan määritellyt tavoitteet.Snow cover plays a significant role in the weather and climate system, ecosystems and many human activities, such as traffic. Weather station snow observations (snow depth and state of the ground) do not provide highresolution continental or global snow coverage data. The satellite observations complement in situ observations from weather stations. Geostationary weather satellites provide observations at high temporal resolution, but the spatial resolution is low, especially in polar regions. Polarorbiting weather satellites provide better spatial resolution in polar regions with limited temporal resolution. The best detection resolution is provided by optical and infra-red radiometers onboard weather satellites. Snow cover in itself is highly variable. Also, the variability of the surface properties (such as vegetation, water bodies, topography) and changing light conditions make satellite snow detection challenging. Much of this variability is in subpixel scales, and this uncertainty creates additional challenges for the development of snow detection methods. Thus, an empirical approach may be the most practical option when developing algorithms for automatic snow detection. In this work, which is a part of the EUMETSAT-funded H SAF project, two new empirically developed snow extent products for the EUMETSAT weather satellites are presented. The geostationary MSG/SEVIRI H32 snow product has been in operational production since 2008. The polar product Metop/AVHRR H32 is available since 2015. In addition, validation results based on weather station snow observations between 2015 and 2019 are presented. The results show that both products achieve the requirements set by the H SAF

    Modelling Net Primary Productivity and Above-Ground Biomass for Mapping of Spatial Biomass Distribution in Kazakhstan

    Get PDF
    Biomass is an important ecological variable for understanding the responses of vegetation to the currently observed global change. The impact of changes in vegetation biomass on the global ecosystem is also of high relevance. The vegetation in the arid and semi-arid environments of Kazakhstan is expected to be affected particularly strongly by future climate change. Therefore, it is of great interest to observe large-scale vegetation dynamics and biomass distribution in Kazakhstan. At the beginning of this dissertation, previous research activities and remote-sensing-based methods for biomass estimation in semi-arid regions have been comprehensively reviewed for the first time. The review revealed that the biggest challenge is the transferability of methods in time and space. Empirical approaches, which are predominantly applied, proved to be hardly transferable. Remote-sensing-based Net Primary Productivity (NPP) models, on the other hand, allow for regional to continental modelling of NPP time-series and are potentially transferable to new regions. This thesis thus deals with modelling and analysis of NPP time-series for Kazakhstan and presents a methodological concept for derivation of above-ground biomass estimates based on NPP data. For validation of the results, biomass field data were collected in three study areas in Kazakhstan. For the selection of an appropriate model, two remote-sensing-based NPP models were applied to a study area in Central Kazakhstan. The first is the Regional Biomass Model (RBM). The second is the Biosphere Energy Transfer Hydrology Model (BETHY/DLR). Both models were applied to Kazakhstan for the first time in this dissertation. Differences in the modelling approaches, intermediate products, and calculated NPP, as well as their temporal characteristics were analysed and discussed. The model BETHY/DLR was then used to calculate NPP for Kazakhstan for 2003–2011. The results were analysed regarding spatial, intra-annual, and inter-annual variations. In addition, the correlation between NPP and meteorological parameters was analysed. In the last part of this dissertation, a methodological concept for derivation of above-ground biomass estimates of natural vegetation from NPP time-series has been developed. The concept is based on the NPP time-series, information about fractional cover of herbaceous and woody vegetation, and plants’ relative growth rates (RGRs). It has been the first time that these parameters are combined for biomass estimation in semi-arid regions. The developed approach was finally applied to estimate biomass for the three study areas in Kazakhstan and validated with field data. The results of this dissertation provide information about the vegetation dynamics in Kazakhstan for 2003–2011. This is valuable information for a sustainable land management and the identification of regions that are potentially affected by a changing climate. Furthermore, a methodological concept for the estimation of biomass based on NPP time-series is presented. The developed method is potentially transferable. Providing that the required information regarding vegetation distribution and fractional cover is available, the method will allow for repeated and large-area biomass estimation for natural vegetation in Kazakhstan and other semi-arid environments

    Earth resources, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 541 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore