1,971 research outputs found

    Near real-time flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images

    Get PDF
    A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively

    Plan for the uniform mapping of earth resources and environmental complexes from Skylab imagery. Assessment of natural vegetation, environmental, and crop analogs

    Get PDF
    The author has identified the following significant results. For interpreting a wide range of natural vegetation analogs, S-190A color infrared and the ERTS-1 color composite were consistently more useful than were conventional color or black and white photos. Color infrared was superior for five vegetation analogs while color was superior for only three. The errors in identification appeared to associate more with black and white single band images than with multiband color. For rice crop analogs, spectral and spatial discriminations both contribute to the usefulness of images for data collection. Tests and subjective analyses conducted in this study indicated that the spectral bands exploited in color infrared film were the most useful for agricultural crop analysis. Accuracy of crop identification on any single date of Skylab images was less than that of multidate analysis due to differences in crop calendar, cultural practices used, rice variety, planting date, planting method, water use, fertilization, disease, or mechanical problems

    Applicability of satellite remote sensing for detection and monitoring of coal strip mining activities

    Get PDF
    The author has identified the following significant results. Large areas covered by orbital photography allows the user to estimate the acreage of strip mining activity from a few frames. Infrared photography both in color and in black and white transparencies was found to be the best suited for this purpose

    Assessing remote sensing application on rangeland insurance in Canadian prairies

    Get PDF
    Part of the problem with implementing a rangeland insurance program is that the acreage of different pasture types, which is required in order to determine an indemnity payment, is difficult to measure on the ground over large areas. Remote sensing techniques provide a potential solution to this problem. This study applied single-date SPOT (Satellite Pour I’Observation de la Terre) imagery, field collected data, and geographic information system (GIS) data to study the classification of land cover and vegetation at species level. Two topographic correction models, Minnaert model and C-correction, and two classifying algorithms, maximum likelihood classifier (MLC) and artificial neural network (ANN), were evaluated. The feasibility of discriminating invasive crested wheatgrass from natives was investigated, and an exponential normalized difference vegetation index (ExpNDMI) was developed to increase the separability between crested wheatgrass and natives. Spectral separability index (SSI) was used to select proper bands and vegetation indices for classification. The results show that topographic corrections can be effective to reduce intra-class rediometric variation caused by topographic effect in the study area and improve the classification. An overall accuracy of 90.5% was obtained by MLC using Minnaert model corrected reflectance, and MLC obtained higher classification accuracy (~5%) than back-propagation based ANN. Topographic correction can reduce intra-class variation and improve classification accuracy at about 4% comparing to the original reflectance. The crested wheatgrass was over-estimated in this study, and the result indicated that single-date SPOT 5 image could not classify crested wheatgrass with satisfactory accuracy. However, the proposed ExpNDMI can reduce intra-class variation and enlarge inter-class variation, further, improve the ability to discriminate invasive crested wheatgrass from natives at 4% of overall accuracy. This study revealed that single-date SPOT image may perform an effective classification on land cover, and will provide a useful tool to update the land cover information in order to implement a rangeland insurance program

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    COMPARISON OF VEGETATION INDICES FROM RPAS AND SENTINEL-2 IMAGERY FOR DETECTING PERMANENT PASTURES

    Get PDF
    Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing
    • …
    corecore