822 research outputs found

    Literature Study On Cloud Based Healthcare File Protection Algorithms

    Get PDF
    There is a huge development in Computers and Cloud computing technology, the trend in recent years is to outsource information storage on Cloud-based services. The cloud provides  large storage space. Cloud-based service providers such as Dropbox, Google Drive, are providing users with infinite and low-cost storage. In this project we aim at presenting a protection method through by encrypting and decrypting the files to provide enhanced level of protection. To encrypt the file that we upload in cloud, we make use of double encryption technique. The file is been encrypted twice one followed by the other using two algorithms. The order in which the algorithms are used is that, the file is first encrypted using AES algorithm, now this file will be in the encrypted format and this encrypted file is again encrypted using RSA algorithm. The corresponding keys are been generated during the execution of the algorithm. This is done in order to increase the security level. The various parameters that we have considered here are security level, speed, data confidentiality, data integrity and cipher text size. Our project is more efficient as it satisfies all the parameters whereas the conventional methods failed to do so. The Cloud we used is Dropbox to store the content of the file which is in the encrypted format using AES and RSA algorithms and corresponding key is generated which can be used to decrypt the file. While uploading the file the double encryption technique is been implemented

    Modified RSA-based algorithm: a double secure approach

    Get PDF
    Security algorithms like RSA are becoming increasingly important for communications to provide companies, organizations, and users around the world, secure applications who rely heavily on them in their daily work. Security algorithms use different acquaintances among companies which might belong to various countries or even cities. Such data should essentially be encrypted to make sure that there is security in transportation. Thus, the current research paper leads to the novel system of security for the safe transfer of data. This paper examines the general principles of encryption and focuses on the development of RSA and the complexity of the encryption key so that it becomes more secure in the applications used. In this project, we will work on the RSA algorithm by adding some complexity to the 3keys (3k). This addition will increase the security and complexity of the algorithm's speed while maintaining encryption and decryption time. The paper also presents an approach by means of public key encryption to enhance cryptographic security. Moreover, double security is provided by the algorithm of RSA. This novel RSA algorithm was investigated in MATLAB. Numerical results for the various parameters such as Mean Square Error (MSE), correlation and Bit Error Ratio (BER) were implemented for the encryption of the message. The experimental results demonstrated that the proposed algorithm for 3 keys has small error rate in the retrieval of the encoded text

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    A Verifiable Fully Homomorphic Encryption Scheme for Cloud Computing Security

    Full text link
    Performing smart computations in a context of cloud computing and big data is highly appreciated today. Fully homomorphic encryption (FHE) is a smart category of encryption schemes that allows working with the data in its encrypted form. It permits us to preserve confidentiality of our sensible data and to benefit from cloud computing powers. Currently, it has been demonstrated by many existing schemes that the theory is feasible but the efficiency needs to be dramatically improved in order to make it usable for real applications. One subtle difficulty is how to efficiently handle the noise. This paper aims to introduce an efficient and verifiable FHE based on a new mathematic structure that is noise free

    Improving the Authentication Mechanism of Business to Consumer (B2C) Platform in a Cloud Computing Environment: Preliminary Findings

    Get PDF
    The reliance of e-commerce infrastructure on cloud computing environment has undoubtedly increased the security challenges in web-based e-commerce portals. This has necessitated the need for a built-in security feature, essentially to improve the authentication mechanism, during the execution of its dependent transactions. Comparative analysis of the existing works and studies on XML-based authentication and non-XML signaturebased security mechanisms for authentication in Business to Consumer (B2C) e-commerce showed the advantage of using XML-based authentication, and its inherent weaknesses and limitations. It is against this background that this study, based on review and meta-analysis of previous works, proposes an improved XML digital signature with RSA algorithm, as a novel algorithmic framework that improves the authentication strength of XML digital signature in the B2C e-commerce in a cloud-based environment. Our future works include testing and validation, and simulation, of the proposed authentication framework in Cisco’s XML Management Interface with inbuilt feature of NETCONF. The evaluation will be done in conformity to international standard and guideline –such as W3C and NIST

    An improved random bit-stuffing technique with a modified RSA algorithm for resisting attacks in information security (RBMRSA)

    Get PDF
    The recent innovations in network application and the internet have made data and network security the major role in data communication system development. Cryptography is one of the outstanding and powerful tools for ensuring data and network security. In cryptography, randomization of encrypted data increases the security level as well as the Computational Complexity of cryptographic algorithms involved. This research study provides encryption algorithms that bring confidentiality and integrity based on two algorithms. The encryption algorithms include a well-known RSA algorithm (1024 key length) with an enhanced bit insertion algorithm to enhance the security of RSA against different attacks. The security classical RSA has depreciated irrespective of the size of the key length due to the development in computing technology and hacking system. Due to these lapses, we have tried to improve on the contribution of the paper by enhancing the security of RSA against different attacks and also increasing diffusion degree without increasing the key length. The security analysis of the study was compared with classical RSA of 1024 key length using mathematical evaluation proofs, the experimental results generated were compared with classical RSA of 1024 key length using avalanche effect in (%) and computational complexity as performance evaluation metrics. The results show that RBMRSA is better than classical RSA in terms of security but at the cost of execution time.publishedVersio

    EXPLORING CONFIDENTIALITY AND PRIVACY OF IMAGE IN CLOUD COMPUTING

    Get PDF
    With the increasing popularity of cloud computing, clients are storing their data in cloud servers and are using “software as a service” for computing services. However, clients’ data may be sensitive, critical, and private, and processing such data with cloud servers may result in losing data privacy or compromising data confidentiality. Some cloud servers may be dishonest, while malicious entities may compromise others. In order to protect data privacy and confidentiality, clients need to be able to hide their actual data values and send the obfuscated values to cloud servers. This thesis deals with the outsourcing of computing to cloud servers, in which clients’ images can be computed and stored. This thesis proposes a technique that obfuscates images before sending them to servers, so these servers can perform computations on images without knowing the actual images. The proposed technique is expected to ensure data privacy and confidentiality. Servers will not be able to identify an individual whose images are stored and manipulated by the server. In addition, our approach employs an obfuscating technique to maintain the confidentiality of images, allowing cloud servers to compute obfuscated data accurately without knowing the actual data value, thus supporting privacy and confidentiality. The proposed approach is based on the Rabin block cipher technique, which has some weaknesses, however. The main drawback is its decryption technique, which results in four values, and only one of these values represents the actual value of plain data. Another issue is that the blocking technique requires a private key for each block that requires a high-computing effort; requiring one private key for each block of data demands that a great number of keys be stored by the client. As a result, it decreases the robustness of the Rabin block cipher. This thesis proposes additional techniques to overcome some of the weaknesses of the Rabin block cipher by introducing some new features, such as tokenization, a digit counter, and a set of blocks. The new technique increases the privacy of data and decreases the computational complexity by requiring fewer private keys. The new features have been implemented in image processing in order to demonstrate their applicability. However, in order to apply our approach to images, we must first apply some preprocessing techniques on images to make them applicable to being obfuscated by our proposed obfuscating system

    Improved RSA security using Chinese Remainder Theorem and Multiple Keys

    Get PDF
    Now a days, have a great dependence on computer and network and the security of computer related to the whole world and everybody. Cryptography is the art and science of achieving security by encoding message to make them non readable, to secure data information transmits over the network, In this paper introduced modified RSA approach based on multi keys and Chinese remainder theorem (CRT), which RSA algorithm is asymmetric key encryption technique. The objective of this Technique is to provide secure transmission of data between any networks. Which is the Network security is an activity which is designed to provide the usage protection and integrity of the Network and data. So that only the user allowed can read and process it, the objective of this paper Enhancement the performance of RSA and increase the security. In proposed model RSA will be implemented using java
    corecore