138 research outputs found

    Nonlinear tube-fitting for the analysis of anatomical and functional structures

    Full text link
    We are concerned with the estimation of the exterior surface and interior summaries of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT) and to a white-matter tract image produced using diffusion tensor imaging (DTI).Comment: Published in at http://dx.doi.org/10.1214/10-AOAS384 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    3D Rigid Registration of Intraoperative Ultrasound and Preoperative MR Brain Images Based on Hyperechogenic Structures

    Get PDF
    The registration of intraoperative ultrasound (US) images with preoperative magnetic resonance (MR) images is a challenging problem due to the difference of information contained in each image modality. To overcome this difficulty, we introduce a new probabilistic function based on the matching of cerebral hyperechogenic structures. In brain imaging, these structures are the liquid interfaces such as the cerebral falx and the sulci, and the lesions when the corresponding tissue is hyperechogenic. The registration procedure is achieved by maximizing the joint probability for a voxel to be included in hyperechogenic structures in both modalities. Experiments were carried out on real datasets acquired during neurosurgical procedures. The proposed validation framework is based on (i) visual assessment, (ii) manual expert estimations , and (iii) a robustness study. Results show that the proposed method (i) is visually efficient, (ii) produces no statistically different registration accuracy compared to manual-based expert registration, and (iii) converges robustly. Finally, the computation time required by our method is compatible with intraoperative use

    Stable inhibition-related inferior frontal hypoactivation and fronto-limbic hyperconnectivity in obsessive–compulsive disorder after concentrated exposure therapy

    Get PDF
    Response inhibition has previously been suggested as an endophenotype for obsessive–compulsive disorder (OCD), evidenced by studies showing worse task performance, and altered task-related activation and connectivity. However, it’s unclear if these measures change following treatment. In this study, 31 OCD patients and 28 healthy controls performed a stop signal task during 3 T functional magnetic resonance imaging before treatment, while 24 OCD patients and 17 healthy controls were rescanned one week and three months after concentrated exposure and response prevention over four consecutive days using Bergen 4-Day Format. To study changes over time we performed a longitudinal analysis on stop signal reaction time and task-related activation and amygdala connectivity during successful and failed inhibition. Results showed that there was no group difference in task performance. Before treatment, OCD patients compared to controls showed less inhibition-related activation in the right inferior frontal gyrus, and increased functional connectivity between the right amygdala and the right inferior frontal gyrus and pre-supplementary motor area. During error-processing, OCD patients versus controls showed less activation in the pre-SMA before treatment. These group differences did not change after treatment. Pre-treatment task performance, brain activation, and connectivity were unrelated to the degree of symptom improvement after treatment. In conclusion, inferior frontal gyrus hypoactivation and increased fronto-limbic connectivity are likely trait markers of OCD that remain after effective exposure therapy.publishedVersio

    Visual stimulation and frequency of focal neurological symptoms engage distinctive neurocognitive resources in migraine with aura patients. A study of resting-state functional networks

    Get PDF
    Introduction: Several functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks. Methods: Before and after 4 min of visual stimulation with a checkerboard pattern, we collected functional MRI in 21 migraine with aura (MwA) patients and 18 healthy subjects (HS). For each recording session, we identified independent resting-state networks in each group and correlated network connection strength changes with clinical disease features. Results: Before visual stimulation, we found reduced connectivity between the default mode network and the left dorsal attention system (DAS) in MwA patients compared to HS. In HS, visual stimulation increases functional connectivity between the independent components of the bilateral DAS and the executive control network (ECN). In MwA, visual stimulation significantly improved functional connectivity between the independent component pairs salience network and DAS, and between DAS and ECN. The ECN Z-scores after visual stimulation were negatively related to the monthly frequency of aura. Conclusions: In individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms

    Thalamocortical Connectivity and Microstructural Changes in Congenital and Late Blindness

    Get PDF
    There is ample evidence that the occipital cortex of congenitally blind individuals processes nonvisual information. It remains a debate whether the cross-modal activation of the occipital cortex is mediated through the modulation of preexisting corticocortical projections or the reorganisation of thalamocortical connectivity. Current knowledge on this topic largely stems from anatomical studies in animal models. The aim of this study was to test whether purported changes in thalamocortical connectivity in blindness can be revealed by tractography based on diffusion-weighted magnetic resonance imaging. To assess the thalamocortical network, we used a clustering method based on the thalamic white matter projections towards predefined cortical regions. Five thalamic clusters were obtained in each group representing their cortical projections. Although we did not find differences in the thalamocortical network between congenitally blind individuals, late blind individuals, and normal sighted controls, diffusion tensor imaging (DTI) indices revealed significant microstructural changes within thalamic clusters of both blind groups. Furthermore, we find a significant decrease in fractional anisotropy (FA) in occipital and temporal thalamocortical projections in both blind groups that were not captured at the network level. This suggests that plastic microstructural changes have taken place, but not in a degree to be reflected in the tractography-based thalamocortical network

    Internet Image Viewer (iiV)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualizing 3-dimensional (3-D) datasets is an important part of modern neuroimaging research. Many tools address this problem; however, they often fail to address specific needs and flexibility, such as the ability to work with different data formats, to control how and what data are displayed, to interact with values, and to undo mistakes.</p> <p>Results</p> <p>iiV, an interactive software program for displaying 3-D brain images, is described. This tool was programmed to solve basic problems in 3-D data visualization. It is written in Java so it is extensible, is platform independent, and can display images within web pages.</p> <p>iiV displays 3-D images as 2-dimensional (2-D) slices with each slice being an independent object with independent features such as location, zoom, colors, labels, etc. Feature manipulation becomes easier by having a full set of editing capabilities including the following: undo or redo changes; drag, copy, delete and paste objects; and save objects with their features to a file for future editing. It can read multiple standard positron emission tomography (PET) and magnetic resonance imaging (MRI) file formats like ECAT, ECAT7, ANALYZE, NIfTI-1 and DICOM. We present sample applications to illustrate some of the features and capabilities.</p> <p>Conclusion</p> <p>iiV is an image display tool with many useful features. It is highly extensible, platform independent, and web-compatible. This report summarizes its features and applications, while illustrating iiV's usefulness to the biomedical imaging community.</p
    • 

    corecore