356 research outputs found

    Mobility Management, Quality of Service, and Security in the Design of Next Generation Wireless Network

    Full text link
    The next generation wireless network needs to provide seamless roaming among various access technologies in a heterogeneous environment. In allowing users to access any system at anytime and anywhere, the performance of mobility-enabled protocols is important. While Mobile IPv6 is generally used to support macro-mobility, integrating Mobile IPv6 with Session Initiation Protocol (SIP) to support IP traffic will lead to improved mobility performance. Advanced resource management techniques will ensure Quality of Service (QoS) during real-time mobility within the Next Generation Network (NGN) platform. The techniques may use a QoS Manager to allow end-to-end coordination and adaptation of Quality of Service. The function of the QoS Manager also includes dynamic allocation of resources during handover. Heterogeneous networks raise many challenges in security. A security entity can be configured within the QoS Manager to allow authentication and to maintain trust relationships in order to minimize threats during system handover. The next generation network needs to meet the above requirements of mobility, QoS, and security

    Seamless connectivity architecture and methods for IoT and wearable devices

    Get PDF
    Wearable and Internet of Things (IoT) devices have the potential to improve lifestyle, personalize receiving treatments or introduce assisted living for elderly people. However, service delivery depends on maintaining and troubleshooting device connectivity to smartphones, where user engagement and technology proficiency represent a possible barrier that prevents a wider adoption, especially in the elderly and disabled population. Low-cost and low-power wearable and IoT devices face challenges when operating out of range of known home networks or pared devices. We propose an architecture and methods to provide seamless connectivity (Se-Co) between devices and wireless networks while maintaining low-power, low-cost and standards compatibility. Through Se-Co, the devices connect without user interaction both in home and in unknown roaming networks while maintaining anonymity, privacy and security. Roaming networks approve data limited connectivity to unknown devices that are able to provide a valid anonymized certificate of compliance and no harm through a home provider. Se-Co enables shifting data processing, such as pattern processing using artificial intelligence, from a wearable device or smartphone towards the cloud. The proposed Se-Co architecture could provide solutions to increase usability of wearable devices and improve their wider adoption, while keeping low the costs of devices, development and services
    • …
    corecore