614 research outputs found

    Machining stability and machine tool dynamics

    Get PDF
    Machining is a common manufacturing process in industry due to its high flexibility and ability to produce parts which excellent quality. The productivity and quality in machining operations can be limited by several process constraints one of which is the self-excited chatter vibrations. Under certain conditions, the process may become unstable yielding oscillations with high amplitudes which result in poor surface finish and damage to the cutting tool, part and the machine tool itself. Stability analysis of the dynamic cutting process can be used to determine chatter-free machining conditions with high material removal rate. Since chatter is a result of the dynamic interactions between the process and the structures both cutting and machine tool dynamics are important elements of the stability analysis. In this paper, methods developed for stability analysis of cutting processes and machine tool dynamics will be presented. Implications of these methods in the selection of process parameters and machine tool design will be also discussed with example applications

    Chatter milling modeling of active magnetic bearing spindle in high-speed domain

    Get PDF
    A new dynamical modeling of Active Magnetic Bearing Spindle (AMBS) to identify machining stability of High Speed Milling (HSM) is presented. This original modeling includes all the minimum required parameters for stability analysis of AMBS machining. The stability diagram generated with this new model is compared to classical stability lobes theory. Thus, behavior’s specificities are highlighted, especially the major importance of forced vibrations for AMBS. Then a sensitivity study shows impacts of several parameters of the controller. For example, gain adjustment shows improvements on stability. Side milling ramp test is used to quickly evaluate the stability. Finally, the simulation results are then validated by HSM cutting tests on a 5 axis machining center with AMBS

    Toolpath dependent stability lobes for the milling of thin-walled parts

    Get PDF
    The milling of thin-walled parts can become a seriously complex problem because the parts have variable dynamics. Firstly, the dynamics evolution of the part has been calculated through Finite Element Method (FEM) analysis. Then, the 3D stability lobes have been calculated for the thin walls and the thin floor. Finally, several milling tests have been performed in order to validate the predictions made by the model

    An analytical design method for milling cutters with nonconstant pitch to increase stability, part 1: Theory

    Get PDF
    Chatter vibrations result in reduced productivity, poor surface finish and decreased cutting tool life. Milling cutters with nonconstant pitch angles can be very effective in improving stability against chatter. In this paper, an analytical stability model and a design method are presented for nonconstant pitch cutters. An explicit relation is obtained between the stability limit and the pitch variation which leads to a simple equation for determination of optimal pitch angles. A certain pitch variation is effective for limited frequency and speed ranges which are also predicted by the model. The improved stability, productivity and surface finish are demonstrated by several examples in the second part of the paper

    Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model

    Get PDF
    In this paper, using the analytical model developed by the authors, the effects of certain system design and operational parameters on the tool point FRF, thus on the chatter stability are studied. Important conclusions are derived regarding the selection of the system parameters at the stage of machine tool design and during a practical application in order to increase chatter stability. It is demonstrated that the stability diagram for an application can be modified in a predictable manner in order to maximize the chatter-free material removal rate by selecting favorable system parameters using the analytical model developed. The predictions of the model, which are based on the methodology proposed in this study, are also experimentally verified

    Analytical prediction of chatter stability for variable pitch and variable helix milling tools

    Get PDF
    Regenerative chatter is a self-excited vibration that can occur during milling and other machining processes. It leads to a poor surface finish, premature tool wear, and potential damage to the machine or tool. Variable pitch and variable helix milling tools have been previously proposed to avoid the onset of regenerative chatter. Although variable pitch tools have been considered in some detail in previous research, this has generally focussed on behaviour at high radial immersions. In contrast there has been very little work focussed on predicting the stability of variable helix tools. In the present study, three solution processes are proposed for predicting the stability of variable pitch or helix milling tools. The first is a semi-discretisation formulation that performs spatial and temporal discretisation of the tool. Unlike previously published methods this can predict the stability of variable pitch or variable helix tools, at low or high radial immersions. The second is a time-averaged semi-discretisation formulation that assumes time-averaged cutting force coefficients. Unlike previous work, this can predict stability of variable helix tools at high radial immersion. The third is a temporal-finite element formulation that can predict the stability of variable pitch tools with a constant uniform helix angle, at low radial immersion. The model predictions are compared to previously published work on variable pitch tools, along with time-domain model simulations. Good agreement is found with both previously published results and the time-domain model. Furthermore, cyclic-fold bifurcations were found to exist for both variable pitch and variable helix tools at lower radial immersions
    • 

    corecore