21 research outputs found

    Homogenous Ensemble Phonotactic Language Recognition Based on SVM Supervector Reconstruction

    Get PDF
    Currently, acoustic spoken language recognition (SLR) and phonotactic SLR systems are widely used language recognition systems. To achieve better performance, researchers combine multiple subsystems with the results often much better than a single SLR system. Phonotactic SLR subsystems may vary in the acoustic features vectors or include multiple language-specific phone recognizers and different acoustic models. These methods achieve good performance but usually compute at high computational cost. In this paper, a new diversification for phonotactic language recognition systems is proposed using vector space models by support vector machine (SVM) supervector reconstruction (SSR). In this architecture, the subsystems share the same feature extraction, decoding, and N-gram counting preprocessing steps, but model in a different vector space by using the SSR algorithm without significant additional computation. We term this a homogeneous ensemble phonotactic language recognition (HEPLR) system. The system integrates three different SVM supervector reconstruction algorithms, including relative SVM supervector reconstruction, functional SVM supervector reconstruction, and perturbing SVM supervector reconstruction. All of the algorithms are incorporated using a linear discriminant analysis-maximum mutual information (LDA-MMI) backend for improving language recognition evaluation (LRE) accuracy. Evaluated on the National Institute of Standards and Technology (NIST) LRE 2009 task, the proposed HEPLR system achieves better performance than a baseline phone recognition-vector space modeling (PR-VSM) system with minimal extra computational cost. The performance of the HEPLR system yields 1.39%, 3.63%, and 14.79% equal error rate (EER), representing 6.06%, 10.15%, and 10.53% relative improvements over the baseline system, respectively, for the 30-, 10-, and 3-s test conditions

    Syväoppiminen puhutun kielen tunnistamisessa

    Get PDF
    This thesis applies deep learning based classification techniques to identify natural languages from speech. The primary motivation behind this thesis is to implement accurate techniques for segmenting multimedia materials by the languages spoken in them. Several existing state-of-the-art, deep learning based approaches are discussed and a subset of the discussed approaches are selected for quantitative experimentation. The selected model architectures are trained on several well-known spoken language identification datasets containing several different languages. Segmentation granularity varies between models, some supporting input audio lengths of 0.2 seconds, while others require 10 second long input to make a language decision. Results from the thesis experiments show that an unsupervised representation of acoustic units, produced by a deep sequence-to-sequence auto encoder, cannot reach the language identification performance of a supervised representation, produced by a multilingual phoneme recognizer. Contrary to most existing results, in this thesis, acoustic-phonetic language classifiers trained on labeled spectral representations outperform phonotactic classifiers trained on bottleneck features of a multilingual phoneme recognizer. More work is required, using transcribed datasets and automatic speech recognition techniques, to investigate why phoneme embeddings did not outperform simple, labeled spectral features. While an accurate online language segmentation tool for multimedia materials could not be constructed, the work completed in this thesis provides several insights for building feasible, modern spoken language identification systems. As a side-product of the experiments performed during this thesis, a free open source spoken language identification software library called "lidbox" was developed, allowing future experiments to begin where the experiments of this thesis end.Tämä diplomityö keskittyy soveltamaan syviä neuroverkkomalleja luonnollisten kielien automaattiseen tunnistamiseen puheesta. Tämän työn ensisijainen tavoite on toteuttaa tarkka menetelmä multimediamateriaalien ositteluun niissä esiintyvien puhuttujen kielien perusteella. Työssä tarkastellaan useampaa jo olemassa olevaa neuroverkkoihin perustuvaa lähestymistapaa, joista valitaan alijoukko tarkempaan tarkasteluun, kvantitatiivisten kokeiden suorittamiseksi. Valitut malliarkkitehtuurit koulutetaan käyttäen eri puhetietokantoja, sisältäen useampia eri kieliä. Kieliosittelun hienojakoisuus vaihtelee käytettyjen mallien mukaan, 0,2 sekunnista 10 sekuntiin, riippuen kuinka pitkän aikaikkunan perusteella malli pystyy tuottamaan kieliennusteen. Diplomityön aikana suoritetut kokeet osoittavat, että sekvenssiautoenkoodaajalla ohjaamattomasti löydetty puheen diskreetti akustinen esitysmuoto ei ole riittävä kielen tunnistamista varten, verrattuna foneemitunnistimen tuottamaan, ohjatusti opetettuun foneemiesitysmuotoon. Tässä työssä havaittiin, että akustisfoneettiset kielentunnistusmallit saavuttavat korkeamman kielentunnistustarkkuuden kuin foneemiesitysmuotoa käyttävät kielentunnistusmallit, mikä eroaa monista kirjallisuudessa esitetyistä tuloksista. Diplomityön tutkimuksia on jatkettava, esimerkiksi litteroituja puhetietokantoja ja puheentunnistusmenetelmiä käyttäen, jotta pystyttäisiin selittämään miksi foneemimallin tuottamalla esitysmuodolla ei saatu parempia tuloksia kuin yksinkertaisemmalla, taajuusspektrin esitysmuodolla. Tämän työn aikana puhutun kielen tunnistaminen osoittautui huomattavasti haasteellisemmaksi kuin mitä työn alussa oli arvioitu, eikä työn aikana onnistuttu toteuttamaan tarpeeksi tarkkaa multimediamateriaalien kielienosittelumenetelmää. Tästä huolimatta, työssä esitetyt lähestymistavat tarjoavat toimivia käytännön menetelmiä puhutun kielen tunnistamiseen tarkoitettujen, modernien järjestelmien rakentamiseksi. Tämän diplomityön sivutuotteena syntyi myös puhutun kielen tunnistamiseen tarkoitettu avoimen lähdekoodin kirjasto nimeltä "lidbox", jonka ansiosta tämän työn kvantitatiivisia kokeita voi jatkaa siitä, mihin ne tämän työn päätteeksi jäivät

    Knowledge Modelling and Learning through Cognitive Networks

    Get PDF
    One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated how memory recall patterns influence phenomena such as creativity, memory search, learning, and more generally, knowledge acquisition, exploration, and exploitation. In parallel, neural network models for artificial intelligence (AI) are also becoming more widespread as inferential models for understanding which features drive language-related phenomena such as meaning reconstruction, stance detection, and emotional profiling. Whereas cognitive networks map explicitly which entities engage in associative relationships, neural networks perform an implicit mapping of correlations in cognitive data as weights, obtained after training over labelled data and whose interpretation is not immediately evident to the experimenter. This book aims to bring together quantitative, innovative research that focuses on modelling knowledge through cognitive and neural networks to gain insight into mechanisms driving cognitive processes related to knowledge structuring, exploration, and learning. The book comprises a variety of publication types, including reviews and theoretical papers, empirical research, computational modelling, and big data analysis. All papers here share a commonality: they demonstrate how the application of network science and AI can extend and broaden cognitive science in ways that traditional approaches cannot

    Deep Neural Network Architectures for Large-scale, Robust and Small-Footprint Speaker and Language Recognition

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura : 27-04-2017Artificial neural networks are powerful learners of the information embedded in speech signals. They can provide compact, multi-level, nonlinear representations of temporal sequences and holistic optimization algorithms capable of surpassing former leading paradigms. Artificial neural networks are, therefore, a promising technology that can be used to enhance our ability to recognize speakers and languages–an ability increasingly in demand in the context of new, voice-enabled interfaces used today by millions of users. The aim of this thesis is to advance the state-of-the-art of language and speaker recognition through the formulation, implementation and empirical analysis of novel approaches for large-scale and portable speech interfaces. Its major contributions are: (1) novel, compact network architectures for language and speaker recognition, including a variety of network topologies based on fully-connected, recurrent, convolutional, and locally connected layers; (2) a bottleneck combination strategy for classical and neural network approaches for long speech sequences; (3) the architectural design of the first, public, multilingual, large vocabulary continuous speech recognition system; and (4) a novel, end-to-end optimization algorithm for text-dependent speaker recognition that is applicable to a range of verification tasks. Experimental results have demonstrated that artificial neural networks can substantially reduce the number of model parameters and surpass the performance of previous approaches to language and speaker recognition, particularly in the cases of long short-term memory recurrent networks (used to model the input speech signal), end-to-end optimization algorithms (used to predict languages or speakers), short testing utterances, and large training data collections.Las redes neuronales artificiales son sistemas de aprendizaje capaces de extraer la información embebida en las señales de voz. Son capaces de modelar de forma eficiente secuencias temporales complejas, con información no lineal y distribuida en distintos niveles semanticos, mediante el uso de algoritmos de optimización integral con la capacidad potencial de mejorar los sistemas aprendizaje automático existentes. Las redes neuronales artificiales son, pues, una tecnología prometedora para mejorar el reconocimiento automático de locutores e idiomas; siendo el reconocimiento de de locutores e idiomas, tareas con cada vez más demanda en los nuevos sistemas de control por voz, que ya utilizan millones de personas. Esta tesis tiene como objetivo la mejora del estado del arte de las tecnologías de reconocimiento de locutor y de idioma mediante la formulación, implementación y análisis empírico de nuevos enfoques basados en redes neuronales, aplicables a dispositivos portátiles y a su uso en gran escala. Las principales contribuciones de esta tesis incluyen la propuesta original de: (1) arquitecturas eficientes que hacen uso de capas neuronales densas, localmente densas, recurrentes y convolucionales; (2) una nueva estrategia de combinación de enfoques clásicos y enfoques basados en el uso de las denominadas redes de cuello de botella; (3) el diseño del primer sistema público de reconocimiento de voz, de vocabulario abierto y continuo, que es además multilingüe; y (4) la propuesta de un nuevo algoritmo de optimización integral para tareas de reconocimiento de locutor, aplicable también a otras tareas de verificación. Los resultados experimentales extraídos de esta tesis han demostrado que las redes neuronales artificiales son capaces de reducir el número de parámetros usados por los algoritmos de reconocimiento tradicionales, así como de mejorar el rendimiento de dichos sistemas de forma substancial. Dicha mejora relativa puede acentuarse a través del modelado de voz mediante redes recurrentes de memoria a largo plazo, el uso de algoritmos de optimización integral, el uso de locuciones de evaluation de corta duración y mediante la optimización del sistema con grandes cantidades de datos de entrenamiento

    Don’t Interrupt Me While I Type: Inferring Text Entered Through Gesture Typing on Android Keyboards

    Get PDF
    We present a new side-channel attack against soft keyboards that support gesture typing on Android smartphones. An application without any special permissions can observe the number and timing of the screen hardware interrupts and system-wide software interrupts generated during user input, and analyze this information to make inferences about the text being entered by the user. System-wide information is usually considered less sensitive than app-specific information, but we provide concrete evidence that this may be mistaken. Our attack applies to all Android versions, including Android M where the SELinux policy is tightened. We present a novel application of a recurrent neural network as our classifier to infer text. We evaluate our attack against the “Google Keyboard” on Nexus 5 phones and use a real-world chat corpus in all our experiments. Our evaluation considers two scenarios. First, we demonstrate that we can correctly detect a set of pre-defined “sentences of interest” (with at least 6 words) with 70% recall and 60% precision. Second, we identify the authors of a set of anonymous messages posted on a messaging board. We find that even if the messages contain the same number of words, we correctly re-identify the author more than 97% of the time for a set of up to 35 sentences. Our study demonstrates a new way in which system-wide resources can be a threat to user privacy. We investigate the effect of rate limiting as a countermeasure but find that determining a proper rate is error-prone and fails in subtle cases. We conclude that real-time interrupt information should be made inaccessible, perhaps via a tighter SELinux policy in the next Android version.This work was partially supported by the Samsung Electronics Research Institute (SERI), Thales, and the Carnegie Trust for the Universities of Scotland

    A Silent-Speech Interface using Electro-Optical Stomatography

    Get PDF
    Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteressierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausgeschlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können. Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor, das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basierend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworterkennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwendet wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde, ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielversprechende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 191Speech technology is a major and growing industry that enriches the lives of technologically-minded people in a number of ways. Many potential users are, however, excluded: Namely, all speakers who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to communicate with a machine by a convenient speech recognition interface without the need for acoustic speech. They also can potentially provide a full replacement voice by synthesizing the intended utterances that are only silently articulated by the user. To that end, the speech movements need to be captured and mapped to either text or acoustic speech. This dissertation proposes a new Silent-Speech Interface based on a newly developed measurement technology called Electro-Optical Stomatography and a novel parametric vocal tract model to facilitate real-time speech synthesis based on the measured data. The hardware was used to conduct command word recognition studies reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was also completed. While the intelligibility of synthesized vowels was high, the intelligibility of consonants and connected speech was quite poor. Promising ways to improve the system are discussed in the outlook.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 19

    Approches Neuronales pour la Reconstruction de Mots Historiques

    Get PDF
    In historical linguistics, cognates are words that descend in direct line from a common ancestor, called their proto-form, andtherefore are representative of their respective languages evolutions through time, as well as of the relations between theselanguages synchronically. As they reflect the phonetic history of the languages they belong to, they allow linguists to betterdetermine all manners of synchronic and diachronic linguistic relations (etymology, phylogeny, sound correspondences).Cognates of related languages tend to be linked through systematic phonetic correspondence patterns, which neuralnetworks could well learn to model, being especially good at learning latent patterns. In this dissertation, we seek tomethodically study the applicability of machine translation inspired neural networks to historical word prediction, relyingon the surface similarity of both tasks. We first create an artificial dataset inspired by the phonetic and phonotactic rules ofRomance languages, which allow us to vary task complexity and data size in a controlled environment, therefore identifyingif and under which conditions neural networks were applicable. We then extend our work to real datasets (after havingupdated an etymological database to gather a correct amount of data), study the transferability of our conclusions toreal data, then the applicability of a number of data augmentation techniques to the task, to try to mitigate low-resourcesituations. We finally investigat in more detail our best models, multilingual neural networks. We first confirm that, onthe surface, they seem to capture language relatedness information and phonetic similarity, confirming prior work. Wethen discover, by probing them, that the information they store is actually more complex: our multilingual models actuallyencode a phonetic language model, and learn enough latent historical information to allow decoders to reconstruct the(unseen) proto-form of the studied languages as well or better than bilingual models trained specifically on the task. Thislatent information is likely the explanation for the success of multilingual methods in the previous worksEn linguistique historique, les cognats sont des mots qui descendent en ligne directe d'un ancêtre commun, leur proto-forme, et qui sont ainsi représentatifs de l'évolution de leurs langues respectives à travers le temps. Comme ils portent eneux l'histoire phonétique des langues auxquelles ils appartiennent, ils permettent aux linguistes de mieux déterminer toutessortes de relations linguistiques synchroniques et diachroniques (étymologie, phylogénie, correspondances phonétiques).Les cognats de langues apparentées sont liés par des correspondances phonétiques systématiques. Les réseaux deneurones, particulièrement adaptés à l'apprentissage de motifs latents, semblent donc bien un bon outil pour modéliserces correspondances. Dans cette thèse, nous cherchons donc à étudier méthodiquement l'applicabilité de réseaux deneurones spécifiques (inspirés de la traduction automatique) à la `prédiction de mots historiques', en nous appuyantsur les similitudes entre ces deux tâches. Nous créons tout d'abord un jeu de données artificiel à partir des règlesphonétiques et phonotactiques des langues romanes, que nous utilisons pour étudier l'utilisation de nos réseaux ensituation controlée, et identifions ainsi sous quelles conditions les réseaux de neurones sont applicables à notre tâched'intérêt. Nous étendons ensuite notre travail à des données réelles (après avoir mis à jour une base étymologiquespour obtenir d'avantage de données), étudions si nos conclusions précédentes leur sont applicables, puis s'il est possibled'utiliser des techniques d'augmentation des données pour pallier aux manque de ressources de certaines situations.Enfin, nous analysons plus en détail nos meilleurs modèles, les réseaux neuronaux multilingues. Nous confirmons àpartir de leurs résultats bruts qu'ils semblent capturer des informations de parenté linguistique et de similarité phonétique,ce qui confirme des travaux antérieurs. Nous découvrons ensuite en les sondant (probing) que les informations qu'ilsstockent sont en fait plus complexes : nos modèles multilingues encodent en fait un modèle phonétique de la langue, etapprennent suffisamment d'informations diachroniques latentes pour permettre à des décodeurs de reconstruire la proto-forme (non vue) des langues étudiées aussi bien, voire mieux, que des modèles bilingues entraînés spécifiquement surcette tâche. Ces informations latentes expliquent probablement le succès des méthodes multilingues dans les travauxprécédents

    IberSPEECH 2020: XI Jornadas en Tecnología del Habla and VII Iberian SLTech

    Get PDF
    IberSPEECH2020 is a two-day event, bringing together the best researchers and practitioners in speech and language technologies in Iberian languages to promote interaction and discussion. The organizing committee has planned a wide variety of scientific and social activities, including technical paper presentations, keynote lectures, presentation of projects, laboratories activities, recent PhD thesis, discussion panels, a round table, and awards to the best thesis and papers. The program of IberSPEECH2020 includes a total of 32 contributions that will be presented distributed among 5 oral sessions, a PhD session, and a projects session. To ensure the quality of all the contributions, each submitted paper was reviewed by three members of the scientific review committee. All the papers in the conference will be accessible through the International Speech Communication Association (ISCA) Online Archive. Paper selection was based on the scores and comments provided by the scientific review committee, which includes 73 researchers from different institutions (mainly from Spain and Portugal, but also from France, Germany, Brazil, Iran, Greece, Hungary, Czech Republic, Ucrania, Slovenia). Furthermore, it is confirmed to publish an extension of selected papers as a special issue of the Journal of Applied Sciences, “IberSPEECH 2020: Speech and Language Technologies for Iberian Languages”, published by MDPI with fully open access. In addition to regular paper sessions, the IberSPEECH2020 scientific program features the following activities: the ALBAYZIN evaluation challenge session.Red Española de Tecnologías del Habla. Universidad de Valladoli

    Neural representations used by brain regions underlying speech production

    Full text link
    Thesis (Ph.D.)--Boston UniversitySpeech utterances are phoneme sequences but may not always be represented as such in the brain. For instance, electropalatography evidence indicates that as speaking rate increases, gestures within syllables are manipulated separately but those within consonant clusters act as one motor unit. Moreover, speech error data suggest that a syllable's phonological content is, at some stage, represented separately from its syllabic frame structure. These observations indicate that speech is neurally represented in multiple forms. This dissertation describes three studies exploring representations of speech used in different brain regions to produce speech. The first study investigated the motor units used to learn novel speech sequences. Subjects learned to produce a set of sequences with illegal consonant clusters (e.g. GVAZF) faster and more accurately than a similar novel set. Subjects then produced novel sequences that retained varying phonemic subsequences of previously learned sequences. Novel sequences were performed as quickly and accurately as learned sequences if they contained no novel consonant clusters, regardless of other phonemic content, implicating consonant clusters as important speech motor representations. The second study investigated the neural correlates of speech motor sequence learning. Functional magnetic resonance imaging (fMRI) revealed increased activity during novel sequence productions in brain regions traditionally associated with non-speech motor sequence learning - including the basal ganglia and premotor cortex - as well as regions associated with learning and updating speech motor representations based on sensory input - including the bilateral frontal operculum and left posterior superior temporal sulcus (pSTs). Behavioral learning measures correlated with increased response for novel sequences in the frontal operculum and with white matter integrity under the pSTs, implicating functional and structural connectivity of these regions in learning success
    corecore