241 research outputs found

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Iteratively reweighted compressive sensing based algorithm for spectrum cartography in cognitive radio networks

    Full text link
    © 2014 IEEE. Spectrum cartography is the process of constructing a map showing Radio Frequency signal strength over a finite geographical area. In our previous work we formulated spectrum cartography as a compressive sensing problem and we illustrated how cartography can be used in the context of discovering spectrum holes in space that can be exploited locally in cognitive radio networks. This paper investigates the performance of compressive sensing based approach to cartography in a fading environment where realtime channel estimation is not feasible. To accommodate for lack of channel information we take an iterative approach. We extend the well-known iteratively reweighted ℓ1 minimisation approach by exploiting spatial correlation between two points in space. We evaluate the performance in an urban environment where Rayleigh fading is prominent. Our numerical results show a significant improvement in the probability of accurately making a spectrum sensing decision, in comparison to the well-known weighted approach and the traditional compressive sensing based method

    Location-free Spectrum Cartography

    Get PDF
    Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps relies on features of these positioning signals rather than on location estimates. Specific learning algorithms are built upon this approach and offer a markedly improved estimation performance than existing approaches relying on localization, as demonstrated by simulation studies in indoor scenarios.Comment: 14 pages, 12 figures, 1 table. Submitted to IEEE Transactions on Signal Processin

    Machine Learning Tools for Radio Map Estimation in Fading-Impaired Channels

    Get PDF
    In spectrum cartography, also known as radio map estimation, one constructs maps that provide the value of a given channel metric such as as the received power, power spectral density (PSD), electromagnetic absorption, or channel-gain for every spatial location in the geographic area of interest. The main idea is to deploy sensors and measure the target channel metric at a set of locations and interpolate or extrapolate the measurements. Radio maps nd a myriad of applications in wireless communications such as network planning, interference coordination, power control, spectrum management, resource allocation, handoff optimization, dynamic spectrum access, and cognitive radio. More recently, radio maps have been widely recognized as an enabling technology for unmanned aerial vehicle (UAV) communications because they allow autonomous UAVs to account for communication constraints when planning a mission. Additional use cases include radio tomography and source localization.publishedVersio

    On the Usage of Geolocation-Aware Spectrum Measurements for Incumbent Location and Transmit Power Detection

    Full text link
    © 2017 IEEE. Determining the geographical area that needs to be excluded due to incumbent activity is critical to realize high spectral utilization in spectrum sharing networks. This can be achieved by estimating the incumbent location and transmit power. However, keeping the hardware complexity of sensing nodes to a minimum and scalability are critical for spectrum sharing applications with commercial intent. We present a discrete-space l1-norm minimization solution based on geolocation-aware energy detection measurements. In practice, the accuracy of geolocation tagging is limited. We capture the impact as a basis mismatch and derive the necessary condition that needs to be satisfied for successful detection of multiple incumbents' location and transmit power. We find the upper bound for the probability of eliminating the impact of limited geolocation tagging accuracy in a lognormal shadow fading environment, which is applicable to all generic I1-norm minimization techniques. We propose an algorithm based on orthogonal matching pursuit that decreases the residual in each iteration by allowing a selected set of basis vectors to rotate in a controlled manner. Numerical evaluation of the proposed algorithm in a Licensed Shared Access (LSA) network shows a significant improvement in the probability of missed detection and false alarm
    • …
    corecore