81 research outputs found

    Analysis and Comparison of Clothoid and Dubins Algorithms for UAV Trajectory Generation

    Get PDF
    The differences between two types of pose-based UAV path generation methods clothoid and Dubins are analyzed in this thesis. The Dubins path is a combination of circular arcs and straight line segments; therefore its curvature will exhibit sudden jumps between constant values. The resulting path will have a minimum length if turns are performed at the minimum possible turn radius. The clothoid path consists of a similar combination of arcs and segments but the difference is that the clothoid arcs have a linearly variable curvature and are generated based on Fresnel integrals. Geometrically, the generation of the clothoid arc starts with a large curvature that decreases to zero. The clothoid path results are longer than the Dubins path between the same two poses and for the same minimum turn radius. These two algorithms are the focus of this research because of their geometrical simplicity, flexibility, and low computational requirements.;The comparison between clothoid and Dubins algorithms relies on extensive simulation results collected using an ad-hoc developed automated data acquisition tool within the WVU UAV simulation environment. The model of a small jet engine UAV has been used for this purpose. The experimental design considers several primary factors, such as different trajectory tracking control laws, normal and abnormal flight conditions, relative configuration of poses, and wind and turbulence. A total of five different controllers have been considered, three conventional with fixed parameters and two adaptive. The abnormal flight conditions include locked or damaged actuators (stabilator, aileron, or rudder) and sensor bias affecting roll, pitch, or yaw rate gyros that are used in the feedback control loop. The relative configuration of consecutive poses is considered in terms of heading (required turn angle) and relative location of start and end points (position quadrant). Wind and turbulence effects were analyzed for different wind speed and direction and several levels of turbulence severity. The evaluation and comparison of the two path generation algorithms are performed based on generated and actual path length and tracking performance assessed in terms of tracking errors and control activity.;Although continuous position and velocity are ensured, the Dubins path yields discontinuous changes in path curvature and hence in commanded lateral accelerations at the transition points between the circular arcs and straight segments. The simulation results show that this generally leads to increased trajectory tracking errors, longer actual paths, and more intense control surface activity. The gradual (linear) change in clothoid curvature yields a continuous change in commanded lateral accelerations with general positive effects on the overall UAV performance based on the metrics considered. The simulation results show general similar trends for all factors considered. As a result, it may be concluded that, due to the continuous change in commanded lateral acceleration, the clothoid path generation algorithm provides overall better performance than the Dubins algorithm, at both normal and abnormal flight conditions, if the UAV mission involves significant maneuvers requiring intense lateral acceleration commands

    Smooth Three-Dimensional Route Planning for Fixed-Wing Unmanned Aerial Vehicles With Double Continuous Curvature

    Get PDF
    This paper presents a smooth flight path planner for maneuvering in a 3D Euclidean space, which is based on two new space curves. The first one is called 'Elementary Clothoid-based 3D Curve (ECb3D)', which is built by concatenating two symmetric Clothoid-based 3D Curves (Cb3D). The combination of these curves allows to reach an arbitrary orientation in 3D Euclidean space. This new curve allows to generate continuous curvature and torsion profiles that start and finish with a null value, which means that they can be concatenated with other curves, such as straight segments, without generating discontinuities on those variables. The second curve is called 'Double Continuous Curvature 3D Curve (DCC3D)' which is built as a concatenation of three straight line segments and two ECb3D curves, allowing to reach an arbitrary configuration in position and orientation in the 3D Euclidean space without discontinuities in curvature and torsion. This trajectory is applied for autonomous path planning and navigation of unmanned aerial vehicles (UAVs) such as fixed-wing aircrafts. Finally, the results are validated on the FlightGear 2018 flight simulator with the UAV kadett 2400 platform

    Development of an Integrated Intelligent Multi -Objective Framework for UAV Trajectory Generation

    Get PDF
    This thesis explores a variety of path planning and trajectory generation schemes intended for small, fixed-wing Unmanned Aerial Vehicles. Throughout this analysis, discrete and pose-based methods are investigated. Pose-based methods are the focus of this research due to their increased flexibility and typically lower computational overhead.;Path planning in 3 dimensions is also performed. The 3D Dubins methodology presented is an extension of a previously suggested approach and addresses both the mathematical formulation of the methodology, as well as an assessment of numerical issues encountered and the solutions implemented for these.;The main contribution of this thesis is a 3-dimensional clothoid trajectory generation algorithm, which produces flyable paths of continuous curvature to ensure a more followable commanded path. This methodology is an extension of the 3D Dubins method and the 2D clothoid method, which have been implemented herein. To ensure flyability of trajectories produced by 3D pose-based trajectory generation methodologies, a set of criteria are specified to limit the possible solutions to only those flyable by the aircraft. Additionally, several assumptions are made concerning the motion of the aircraft in order to simplify the path generation problem.;The 2D and 3D clothoid and Dubins trajectory planners are demonstrated through a trajectory tracking performance comparison between first the 2D Dubins and 2D clothoid methods using a position proportional-integral-derivative controller, then the 3D Dubins and 3D clothoid methods using both a position proportional-integral-derivative controller and an outer-loop non-linear dynamic inversion controller, within the WVU UAV Simulation Environment. These comparisons are demonstrated for both nominal and off-nominal conditions, and show that for both 2D and 3D implementations, the clothoid path planners yields paths with better trajectory tracking performance as compared to the Dubins path planners.;Finally, to increase the effectiveness and autonomy of these pose-based trajectory generation methodologies, an immunity-based evolutionary optimization algorithm is developed to select a viable and locally-optimal trajectory through an environment while observing desired points of interest and minimizing threat exposure, path length, and estimated fuel consumption. The algorithm is effective for both 2D and 3D routes, as well as combinations thereof. A brief demonstration is provided for this algorithm. Due to the calculation time requirements, this algorithm is recommended for offline use

    Clothoid-Based Three-Dimensional Curve for Attitude Planning

    Get PDF
    Interest in flying robots, also known as unmanned aerial vehicles (UAVs), has grown during last years in both military and civil fields [1, 2]. The same happens to autonomous underwater vehicles (AUVs) [3]. These vehicles, UAVs and AUVs, offer a wide variety of possible applications and challenges, such as control, guidance or navigation [2, 3]. In this sense, heading and attitude control in UAVs is very important [4], particularly relevant in airplanes (fixed-wing flying vehicles), because they are strongly non-linear, coupled, and tend to be underactuated systems with non-holonomic constraints. Hence, designing a good attitude controller is a difficult task [5, 6, 7, 8, 9], where stability must be taken into account by the controller [10]. Indeed, if the reference is too demanding for the controller or non-achievable because its dynamics is too fast, the vehicle might become unstable. In order to address this issue, autonomous navigation systems usually include a high-level path planner to generate smooth reference trajectories to be followed by the vehicle using a low-level controller. Usually a set of waypoints is given in GPS coordinates, normally from a map, in order to apply a smooth point-to-point control trajectory [11, 12]

    Path Planning for Aircraft Under Threat of Detection from Ground-Based Radar with Uncertainty in Aircraft and Radar States

    Get PDF
    Mission planners for manned and unmanned aircraft operating within the detection range of ground-based radar systems are often concerned with the probability of detection. Several factors influence the probability of detection, including aircraft position and orientation, radar position, and radar performance parameters. Current path planning algorithms assume that these factors are known with certainty, but in practice, these factors are estimated and have some uncertainty. This dissertation explores methods to consider the uncertainty in the detection factors for an aircraft path planner. First, the detection model is extended to include uncertainty in the aircraft position and orientation, radar position, and radar parameters. Second, an efficient method to estimate the aircraft position and orientation uncertainty is presented that enables rapid path evaluation. Third, the extended radar model and efficient aircraft uncertainty calculation are incorporated into a path planner that evaluates the sources of uncertainty and provides actionable information to the mission planner

    Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs

    Full text link
    [EN] Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning algorithms address the problem by using the approach of maintaining a constant altitude. Addressing the problem of path planning in a three-dimensional (3D) space implies more complex scenarios where maintaining altitude is not a valid approach. The work presented here implements an architecture for the generation of 3D flight paths for fixed-wing unmanned aerial vehicles (UAVs). The aim is to determine the feasible flight path by minimizing the turning effort, starting from a set of control points in 3D space, including the initial and final point. The trajectory generated takes into account the rotation and elevation constraints of the UAV. From the defined control points and the movement constraints of the UAV, a path is generated that combines the union of the control points by means of a set of rectilinear segments and spherical curves. However, this design methodology means that the problem does not have a single solution; in other words, there are infinite solutions for the generation of the final path. For this reason, a multiobjective optimization problem (MOP) is proposed with the aim of independently maximizing each of the turning radii of the path. Finally, to produce a complete results visualization of the MOP and the final 3D trajectory, the architecture was implemented in a simulation with Matlab/Simulink/flightGear.The authors would like to acknowledge the Spanish Ministerio de Ciencia, Innovacion y Universidades for providing funding through the project RTI2018-096904-B-I00 and the local administration Generalitat Valenciana through projects GV/2017/029 and AICO/2019/055. Franklin Samaniego thanks IFTH (Instituto de Fomento al Talento Humano) Ecuador (2015-AR2Q9209), for its sponsorship of this work.Samaniego, F.; Sanchís Saez, J.; Garcia-Nieto, S.; Simarro Fernández, R. (2020). Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics. 9(1):1-23. https://doi.org/10.3390/electronics9010051S12391Kyriakidis, M., Happee, R., & de Winter, J. C. F. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140. doi:10.1016/j.trf.2015.04.014Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. doi:10.1016/j.jenvp.2006.08.001Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., & Hagita, N. (2013). Human-comfortable navigation for an autonomous robotic wheelchair. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2013.6696743Krotkov, E., & Hebert, M. (s. f.). Mapping and positioning for a prototype lunar rover. Proceedings of 1995 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1995.525697Rodriguez-Seda, E. J. (2014). Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed. 2014 American Control Conference. doi:10.1109/acc.2014.6859184Xiaoping Ren, & Zixing Cai. (2010). Kinematics model of unmanned driving vehicle. 2010 8th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2010.5554512Jun, J.-Y., Saut, J.-P., & Benamar, F. (2016). Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robotics and Autonomous Systems, 75, 325-339. doi:10.1016/j.robot.2015.09.014Li, Y., Ding, L., & Liu, G. (2016). Attitude-based dynamic and kinematic models for wheels of mobile robot on deformable slope. Robotics and Autonomous Systems, 75, 161-175. doi:10.1016/j.robot.2015.10.006Mekonnen, G., Kumar, S., & Pathak, P. M. (2016). Wireless hybrid visual servoing of omnidirectional wheeled mobile robots. Robotics and Autonomous Systems, 75, 450-462. doi:10.1016/j.robot.2015.08.008Xu, J., Wang, M., & Qiao, L. (2015). Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engineering, 105, 54-63. doi:10.1016/j.oceaneng.2015.06.022Gafurov, S. A., & Klochkov, E. V. (2015). Autonomous Unmanned Underwater Vehicles Development Tendencies. Procedia Engineering, 106, 141-148. doi:10.1016/j.proeng.2015.06.017Qi, X., & Cai, Z. (2018). Three-dimensional formation control based on nonlinear small gain method for multiple underactuated underwater vehicles. Ocean Engineering, 151, 105-114. doi:10.1016/j.oceaneng.2018.01.032Ramasamy, S., Sabatini, R., Gardi, A., & Liu, J. (2016). LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology, 55, 344-358. doi:10.1016/j.ast.2016.05.020Zhu, L., Cheng, X., & Yuan, F.-G. (2016). A 3D collision avoidance strategy for UAV with physical constraints. Measurement, 77, 40-49. doi:10.1016/j.measurement.2015.09.006Chee, K. Y., & Zhong, Z. W. (2013). Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical, 190, 66-76. doi:10.1016/j.sna.2012.11.017Courbon, J., Mezouar, Y., Guénard, N., & Martinet, P. (2010). Vision-based navigation of unmanned aerial vehicles. Control Engineering Practice, 18(7), 789-799. doi:10.1016/j.conengprac.2010.03.004Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875Liang, Y., & Xu, L. (2009). Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC ’09. doi:10.1145/1543834.1543875Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2016). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829-5839. doi:10.1007/s00500-016-2161-7Cao, H., Sun, S., Zhang, K., & Tang, Z. (2016). Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm. Optik, 127(20), 9974-9983. doi:10.1016/j.ijleo.2016.07.078Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7(1), 24-37. doi:10.1108/ijicc-02-2014-0005Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47-58. doi:10.1016/j.dt.2017.01.001Samaniego, F., Sanchis, J., García-Nieto, S., & Simarro, R. (2019). Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics, 8(3), 306. doi:10.3390/electronics8030306Dubins, L. E. (1957). On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics, 79(3), 497. doi:10.2307/2372560Fleury, S., Soueres, P., Laumond, J.-P., & Chatila, R. (1995). Primitives for smoothing mobile robot trajectories. IEEE Transactions on Robotics and Automation, 11(3), 441-448. doi:10.1109/70.388788Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835Brezak, M., & Petrovic, I. (2014). Real-time Approximation of Clothoids With Bounded Error for Path Planning Applications. IEEE Transactions on Robotics, 30(2), 507-515. doi:10.1109/tro.2013.2283928Barsky, B. A., & DeRose, T. D. (1989). Geometric continuity of parametric curves: three equivalent characterizations. IEEE Computer Graphics and Applications, 9(6), 60-69. doi:10.1109/38.41470Kim, H., Kim, D., Shin, J.-U., Kim, H., & Myung, H. (2014). Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering, 84, 37-44. doi:10.1016/j.oceaneng.2014.03.034Isaacs, J., & Hespanha, J. (2013). Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach. Algorithms, 6(1), 84-99. doi:10.3390/a6010084Masehian, E., & Kakahaji, H. (2014). NRR: a nonholonomic random replanner for navigation of car-like robots in unknown environments. Robotica, 32(7), 1101-1123. doi:10.1017/s0263574713001276Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s to Continuous-Curvature Paths. IEEE Transactions on Robotics, 20(6), 1025-1035. doi:10.1109/tro.2004.833789Pepy, R., Lambert, A., & Mounier, H. (s. f.). Path Planning using a Dynamic Vehicle Model. 2006 2nd International Conference on Information & Communication Technologies. doi:10.1109/ictta.2006.1684472Girbés, V., Vanegas, G., & Armesto, L. (2019). Clothoid-Based Three-Dimensional Curve for Attitude Planning. Journal of Guidance, Control, and Dynamics, 42(8), 1886-1898. doi:10.2514/1.g003551De Lorenzis, L., Wriggers, P., & Hughes, T. J. R. (2014). Isogeometric contact: a review. GAMM-Mitteilungen, 37(1), 85-123. doi:10.1002/gamm.201410005Pigounakis, K. G., Sapidis, N. S., & Kaklis, P. D. (1996). Fairing Spatial B-Spline Curves. Journal of Ship Research, 40(04), 351-367. doi:10.5957/jsr.1996.40.4.351Pérez, L. H., Aguilar, M. C. M., Sánchez, N. M., & Montesinos, A. F. (2018). Path Planning Based on Parametric Curves. Advanced Path Planning for Mobile Entities. doi:10.5772/intechopen.72574Huh, U.-Y., & Chang, S.-R. (2014). A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(2), 25. doi:10.5772/57340Chang, S.-R., & Huh, U.-Y. (2014). A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(12), 194. doi:10.5772/59463Yaochu Jin, & Sendhoff, B. (2008). Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3), 397-415. doi:10.1109/tsmcc.2008.919172Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294Honig, E., Schucking, E. L., & Vishveshwara, C. V. (1974). Motion of charged particles in homogeneous electromagnetic fields. Journal of Mathematical Physics, 15(6), 774-781. doi:10.1063/1.1666728Iyer, B. R., & Vishveshwara, C. V. (1988). The Frenet-Serret formalism and black holes in higher dimensions. Classical and Quantum Gravity, 5(7), 961-970. doi:10.1088/0264-9381/5/7/005Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.01

    Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Get PDF
    Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust) are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations

    Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)

    Full text link
    [EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in very structured environments. Apart from industry and consumer electronics, within the automotive field there are some devices that give intelligence to the vehicle, derived in most cases from advances in mobile robotics. In fact, more and more often vehicles incorporate Advanced Driver Assistance Systems (ADAS), such as navigation control with automatic speed regulation, lane change and overtaking assistant, automatic parking or collision warning, among other features. However, despite all the advances there are some problems that remain unresolved and can be improved. Collisions and rollovers stand out among the most common accidents of vehicles with manual or autonomous driving. In fact, it is almost impossible to guarantee driving without accidents in unstructured environments where vehicles share the space with other moving agents, such as other vehicles and pedestrians. That is why searching for techniques to improve safety in intelligent vehicles, either autonomous or manual-assisted driving, is still a trending topic within the robotics community. This thesis focuses on the design of tools and techniques for planning and control of intelligent vehicles in order to improve safety and comfort. The dissertation is divided into two parts, the first one on autonomous driving and the second one on manual-assisted driving. The main link between them is the use of clothoids as mathematical formulation for both trajectory generation and collision detection. Among the problems solved the following stand out: obstacle avoidance, rollover avoidance and advanced driver assistance to avoid collisions with pedestrians.[ES] En la actualidad se comercializan infinidad de productos de electrónica de consumo que incorporan elementos y características procedentes de avances en el sector de la robótica móvil. Por ejemplo, el conocido robot aspirador Roomba de la empresa iRobot, el cual pertenece al campo de la robótica de servicio, uno de los más activos en el sector. También hay numerosos sistemas robóticos autónomos en almacenes y plantas industriales. Es el caso de los vehículos autoguiados (AGVs), capaces de conducir de forma totalmente autónoma en entornos muy estructurados. Además de en la industria y en electrónica de consumo, dentro del campo de la automoción también existen dispositivos que dotan de cierta inteligencia al vehículo, derivados la mayoría de las veces de avances en robótica móvil. De hecho, cada vez con mayor frecuencia los vehículos incorporan sistemas avanzados de asistencia al conductor (ADAS por sus siglas en inglés), tales como control de navegación con regulación automática de velocidad, asistente de cambio de carril y adelantamiento, aparcamiento automático o aviso de colisión, entre otras prestaciones. No obstante, pese a todos los avances siguen existiendo problemas sin resolver y que pueden mejorarse. La colisión y el vuelco destacan entre los accidentes más comunes en vehículos con conducción tanto manual como autónoma. De hecho, la dificultad de conducir en entornos desestructurados compartiendo el espacio con otros agentes móviles, tales como coches o personas, hace casi imposible garantizar la conducción sin accidentes. Es por ello que la búsqueda de técnicas para mejorar la seguridad en vehículos inteligentes, ya sean de conducción autónoma o manual asistida, es un tema que siempre está en auge en la comunidad robótica. La presente tesis se centra en el diseño de herramientas y técnicas de planificación y control de vehículos inteligentes, para la mejora de la seguridad y el confort. La disertación se ha dividido en dos partes, la primera sobre conducción autónoma y la segunda sobre conducción manual asistida. El principal nexo de unión es el uso de clotoides como elemento de generación de trayectorias y detección de colisiones. Entre los problemas que se resuelven destacan la evitación de obstáculos, la evitación de vuelcos y la asistencia avanzada al conductor para evitar colisiones con peatones.[CA] En l'actualitat es comercialitzen infinitat de productes d'electrònica de consum que incorporen elements i característiques procedents d'avanços en el sector de la robòtica mòbil. Per exemple, el conegut robot aspirador Roomba de l'empresa iRobot, el qual pertany al camp de la robòtica de servici, un dels més actius en el sector. També hi ha nombrosos sistemes robòtics autònoms en magatzems i plantes industrials. És el cas dels vehicles autoguiats (AGVs), els quals són capaços de conduir de forma totalment autònoma en entorns molt estructurats. A més de en la indústria i en l'electrònica de consum, dins el camp de l'automoció també existeixen dispositius que doten al vehicle de certa intel·ligència, la majoria de les vegades derivats d'avanços en robòtica mòbil. De fet, cada vegada amb més freqüència els vehicles incorporen sistemes avançats d'assistència al conductor (ADAS per les sigles en anglés), com ara control de navegació amb regulació automàtica de velocitat, assistent de canvi de carril i avançament, aparcament automàtic o avís de col·lisió, entre altres prestacions. No obstant això, malgrat tots els avanços segueixen existint problemes sense resoldre i que poden millorar-se. La col·lisió i la bolcada destaquen entre els accidents més comuns en vehicles amb conducció tant manual com autònoma. De fet, la dificultat de conduir en entorns desestructurats compartint l'espai amb altres agents mòbils, tals com cotxes o persones, fa quasi impossible garantitzar la conducció sense accidents. És per això que la recerca de tècniques per millorar la seguretat en vehicles intel·ligents, ja siguen de conducció autònoma o manual assistida, és un tema que sempre està en auge a la comunitat robòtica. La present tesi es centra en el disseny d'eines i tècniques de planificació i control de vehicles intel·ligents, per a la millora de la seguretat i el confort. La dissertació s'ha dividit en dues parts, la primera sobre conducció autònoma i la segona sobre conducció manual assistida. El principal nexe d'unió és l'ús de clotoides com a element de generació de trajectòries i detecció de col·lisions. Entre els problemes que es resolen destaquen l'evitació d'obstacles, l'evitació de bolcades i l'assistència avançada al conductor per evitar col·lisions amb vianants.Girbés Juan, V. (2016). Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65072TESI

    Spatial and Temporal Considerations in Vehicle Path Tracking With an Emphasis on Spatial Robustness

    Get PDF
    This dissertation researches the task and path management of an autonomous vehicle with Ackerman-type steering. The task management problem was approached as a path training operation in which a human operator drives the desired path through an environment. A training trajectory is converted into a series of path segments that are driveable by the autonomous vehicle by first fitting a general path to the dataset. Next, transition segments are added to the general path to match the vehicle velocity and steering angle rate limit. The path management problem has been approached by first deriving a kine- matic model of the vehicle. The time domain model is expressed in the frequency domain and then converted into a spatial frequency domain. Next, a stability crite- rion is derived and used in the synthesis of a spatially-robust path controller

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms
    corecore