311 research outputs found

    Improving the robustness of CELP-like speech decoders using late-arrival packets information : application to G.729 standard in VoIP

    Get PDF
    L'utilisation de la voix sur Internet est une nouvelle tendance dans Ie secteur des télécommunications et de la réseautique. La paquetisation des données et de la voix est réalisée en utilisant Ie protocole Internet (IP). Plusieurs codecs existent pour convertir la voix codée en paquets. La voix codée est paquetisée et transmise sur Internet. À la réception, certains paquets sont soit perdus, endommages ou arrivent en retard. Ceci est cause par des contraintes telles que Ie délai («jitter»), la congestion et les erreurs de réseau. Ces contraintes dégradent la qualité de la voix. Puisque la transmission de la voix est en temps réel, Ie récepteur ne peut pas demander la retransmission de paquets perdus ou endommages car ceci va causer plus de délai. Au lieu de cela, des méthodes de récupération des paquets perdus (« concealment ») s'appliquent soit à l'émetteur soit au récepteur pour remplacer les paquets perdus ou endommages. Ce projet vise à implémenter une méthode innovatrice pour améliorer Ie temps de convergence suite a la perte de paquets au récepteur d'une application de Voix sur IP. La méthode a déjà été intégrée dans un codeur large-bande (AMR-WB) et a significativement amélioré la qualité de la voix en présence de <<jitter » dans Ie temps d'arrivée des trames au décodeur. Dans ce projet, la même méthode sera intégrée dans un codeur a bande étroite (ITU-T G.729) qui est largement utilise dans les applications de voix sur IP. Le codeur ITU-T G.729 défini des standards pour coder et décoder la voix a 8 kb/s en utilisant 1'algorithme CS-CELP (Conjugate Stmcture Algebraic Code-Excited Linear Prediction).Abstract: Voice over Internet applications is the new trend in telecommunications and networking industry today. Packetizing data/voice is done using the Internet protocol (IP). Various codecs exist to convert the raw voice data into packets. The coded and packetized speech is transmitted over the Internet. At the receiving end some packets are either lost, damaged or arrive late. This is due to constraints such as network delay (fitter), network congestion and network errors. These constraints degrade the quality of speech. Since voice transmission is in real-time, the receiver can not request the retransmission of lost or damaged packets as this will cause more delay. Instead, concealment methods are applied either at the transmitter side (coder-based) or at the receiver side (decoder-based) to replace these lost or late-arrival packets. This work attempts to implement a novel method for improving the recovery time of concealed speech The method has already been integrated in a wideband speech coder (AMR-WB) and significantly improved the quality of speech in the presence of jitter in the arrival time of speech frames at the decoder. In this work, the same method will be integrated in a narrowband speech coder (ITU-T G.729) that is widely used in VoIP applications. The ITUT G.729 coder defines the standards for coding and decoding speech at 8 kb/s using Conjugate Structure Algebraic Code-Excited Linear Prediction (CS-CELP) Algorithm

    Voice over Ip Framework and Simulation For Low Rate Speech and the Future Narrowband Digital Terminal

    Get PDF

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Speech quality prediction for voice over Internet protocol networks

    Get PDF
    Merged with duplicate record 10026.1/878 on 03.01.2017 by CS (TIS). Merged with duplicate record 10026.1/1657 on 15.03.2017 by CS (TIS)This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin ([email protected]) to discuss options.IP networks are on a steep slope of innovation that will make them the long-term carrier of all types of traffic, including voice. However, such networks are not designed to support real-time voice communication because their variable characteristics (e.g. due to delay, delay variation and packet loss) lead to a deterioration in voice quality. A major challenge in such networks is how to measure or predict voice quality accurately and efficiently for QoS monitoring and/or control purposes to ensure that technical and commercial requirements are met. Voice quality can be measured using either subjective or objective methods. Subjective measurement (e.g. MOS) is the benchmark for objective methods, but it is slow, time consuming and expensive. Objective measurement can be intrusive or non-intrusive. Intrusive methods (e.g. ITU PESQ) are more accurate, but normally are unsuitable for monitoring live traffic because of the need for a reference data and to utilise the network. This makes non-intrusive methods(e.g. ITU E-model) more attractive for monitoring voice quality from IP network impairments. However, current non-intrusive methods rely on subjective tests to derive model parameters and as a result are limited and do not meet new and emerging applications. The main goal of the project is to develop novel and efficient models for non-intrusive speech quality prediction to overcome the disadvantages of current subjective-based methods and to demonstrate their usefulness in new and emerging VoIP applications. The main contributions of the thesis are fourfold: (1) a detailed understanding of the relationships between voice quality, IP network impairments (e.g. packet loss, jitter and delay) and relevant parameters associated with speech (e.g. codec type, gender and language) is provided. An understanding of the perceptual effects of these key parameters on voice quality is important as it provides a basis for the development of non-intrusive voice quality prediction models. A fundamental investigation of the impact of the parameters on perceived voice quality was carried out using the latest ITU algorithm for perceptual evaluation of speech quality, PESQ, and by exploiting the ITU E-model to obtain an objective measure of voice quality. (2) a new methodology to predict voice quality non-intrusively was developed. The method exploits the intrusive algorithm, PESQ, and a combined PESQ/E-model structure to provide a perceptually accurate prediction of both listening and conversational voice quality non-intrusively. This avoids time-consuming subjective tests and so removes one of the major obstacles in the development of models for voice quality prediction. The method is generic and as such has wide applicability in multimedia applications. Efficient regression-based models and robust artificial neural network-based learning models were developed for predicting voice quality non-intrusively for VoIP applications. (3) three applications of the new models were investigated: voice quality monitoring/prediction for real Internet VoIP traces, perceived quality driven playout buffer optimization and perceived quality driven QoS control. The neural network and regression models were both used to predict voice quality for real Internet VoIP traces based on international links. A new adaptive playout buffer and a perceptual optimization playout buffer algorithms are presented. A QoS control scheme that combines the strengths of rate-adaptive and priority marking control schemes to provide a superior QoS control in terms of measured perceived voice quality is also provided. (4) a new methodology for Internet-based subjective speech quality measurement which allows rapid assessment of voice quality for VoIP applications is proposed and assessed using both objective and traditional MOS test methods

    New techniques in signal coding

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Transcoding between QCELP 13K and G.723.1 CELP speech coders

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (leaves 77-78).by Durodami J. Lisk.S.B.and M.Eng
    • …
    corecore