53,895 research outputs found

    Credit risk modeling: A comparative analysis of artificial and deep neural networks

    Get PDF
    Credit risk assessment plays a major role in the banks and financial institutions to prevent counterparty risk failure. One of the primary capabilities of a robust risk management system must be detecting the risks earlier, though many of the bank systems today lack this key capability which leads to further losses (MGI, 2017). In searching for an improved methodology to detect such credit risk and increasing the lacking capabilities earlier, a comparative analysis between Deep Neural Network (DNN) and machine learning techniques such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN) were conducted. The Deep Neural Network used in this study consists of six layers of neurons. Further, sampling techniques such as SMOTE, SVM-SMOTE, RUS, and All-KNN to make the imbalanced dataset a balanced one were also applied. Using supervised learning techniques, the proposed DNN model was able to achieve an accuracy of 82.18% with a ROC score of 0.706 using the RUS sampling technique. The All KNN sampling technique was capable of achieving the maximum true positives in two different models. Using the proposed approach, banks and credit check institutions can help prevent major losses occurring due to counterparty risk failure.credit riskdeep neural networkartificial neural networksupport vector machinessampling technique

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Contractive De-noising Auto-encoder

    Full text link
    Auto-encoder is a special kind of neural network based on reconstruction. De-noising auto-encoder (DAE) is an improved auto-encoder which is robust to the input by corrupting the original data first and then reconstructing the original input by minimizing the reconstruction error function. And contractive auto-encoder (CAE) is another kind of improved auto-encoder to learn robust feature by introducing the Frobenius norm of the Jacobean matrix of the learned feature with respect to the original input. In this paper, we combine de-noising auto-encoder and contractive auto- encoder, and propose another improved auto-encoder, contractive de-noising auto- encoder (CDAE), which is robust to both the original input and the learned feature. We stack CDAE to extract more abstract features and apply SVM for classification. The experiment result on benchmark dataset MNIST shows that our proposed CDAE performed better than both DAE and CAE, proving the effective of our method.Comment: Figures edite
    • …
    corecore