47 research outputs found

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Contribution to the integration, performance improvement, and smart management of data and resources in the Internet of Things

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones.[ENG] This doctoral dissertation has been presented in the form of thesis by publication. The IoT has seen a tremendous growth in the last few years. Not only due to its potential to transform societies, but also as an enabling technology for many other technological advances. Unfortunately, the IoT is a relatively recent paradigm that lacks the maturity of other well-established (not so recent) revolutions like the internet itself or Wireless Sensor Networks; upon which the IoT is built. The presented Thesis contributes to this maturation process by researching on the underlying communication mechanisms that enable a truly ubiquitous and effective IoT. As a Thesis by compilation, 5 relevant articles are introduced and discussed. Each of such articles delve into different key aspects that, in their own way, help closing the gap between what the IoT is expected to bring and what the IoT actually brings. As thoroughly commented throughout the main text, the comprehensive approach taken in this Thesis ensures that multiple angles of the same plane --the communication plane-- are analyzed and studied. From the mathematical analysis of how electromagnetic waves propagate through complex environments to the utilization of recent Machine Learning techniques, this Thesis explore a wide range of scientific and researching tools that are shown to improve the final performance of the IoT. In the first three chapters of this document, the reader will be introduced to the current context and state-of-the-art of the IoT while, at the same time, the formal objectives of this Thesis are outlined and set into such a global context. In the next five chapters, the five corresponding articles are presented and commented. For each and every of these articles: a brief abstract, a methodology summary, a highlight on the results and contributions and final conclusions are also added. Lastly, in the two last chapters, the final conclusions and future lines of this Thesis are commented.Los artículos que componen la tesis son los siguientes: 1. R. M. Sandoval, A.-J. J. Garcia-Sanchez, F. Garcia-Sanchez, and J. Garcia-Haro, \Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz," Sensors, vol. 17, no. 1, p. 76, Dec. 2016. 2. R. M. Sandoval, A.-J. J. Garcia-Sanchez, J.-M. M. Molina-Garcia-Pardo, F. Garcia-Sanchez, and J. Garcia-Haro, \Radio-Channel Characterization of Smart Grid Substations in the 2.4-GHz ISM Band," IEEE Trans. Wirel. Commun., vol. 16, no. 2, pp. 1294{1307, Feb. 2017. 3. R. M. Sandoval, A. J. Garcia-Sanchez, and J. Garcia-Haro, \Improving RSSI-based path-loss models accuracy for critical infrastructures: A smart grid substation case-study," IEEE Trans. Ind. Informatics, vol. 14, no. 5, pp. 2230{2240, 2018. 4. R. M. Sandoval, A.-J. Garcia-Sanchez, J. Garcia-Haro, and T. M. Chen, \Optimal policy derivation for Transmission Duty-Cycle constrained LPWAN," IEEE Internet Things J., vol. 5, no. 4, pp. 1{1, Aug. 2018. 5. R. M. Sandoval, S. Canovas-Carrasco, A. Garcia-Sanchez, and J. Garcia-Haro, \Smart Usage of Multiple RAT in IoT-oriented 5G Networks: A Reinforcement Learning Approach," in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), 2018, pp. 1-8.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Politécnica de Cartagen

    Practical Experiences of a Smart Livestock Location Monitoring System leveraging GNSS, LoRaWAN and Cloud Services.

    Get PDF
    Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the Northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration and number of devices. The results are analyzed and discussed for packe delivery ratio, energy consumption, localization accuracy, battery discharge measurement and delay

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF
    corecore