28,587 research outputs found

    Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles.

    Get PDF
    This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    Full-field fluorescence lifetime dual-comb microscopy using spectral mapping and frequency multiplexing of dual-comb optical beats

    Get PDF
    Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool for quantitative fluorescence imaging because fluorescence lifetime is independent of concentration of fluorescent molecules or excitation/detection efficiency and is robust to photobleaching. However, since most FLIMs are based on point-to-point measurements, mechanical scanning of a focal spot is needed for forming an image, which hampers rapid imaging. Here, we demonstrate scan-less full-field FLIM based on a one-to-one correspondence between two-dimensional (2D) image pixels and frequency-multiplexed radio frequency (RF) signals. A vast number of dual-comb optical beats between dual optical frequency combs are effectively adopted for 2D spectral mapping and high-density frequency multiplexing in the RF region. Bimodal images of fluorescence amplitude and lifetime are obtained with high quantitativeness from amplitude and phase spectra of fluorescence RF comb modes without the need for mechanical scanning. The parallelized FLIM will be useful for rapid quantitative fluorescence imaging in life science

    Characterizing the Quantum Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

    Get PDF
    We optimized the performance of quantum confined Stark effect QCSE based voltage nanosensors. A high throughput approach for single particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type II ZnSe CdS seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the excitons emission under applied field was characterized. An upper limit for the temporal response of individual ZnSe CdS nanorods to voltage modulation was characterized by high throughput, high temporal resolution intensity measurements using a novel photon counting camera. The measured 3.5 us response time is limited by the voltage modulation electronics and represents about 30 times higher bandwidth than needed for recording an action potential in a neuron.Comment: 36 pages, 6 figure

    Scan-less full-field fluorescence-lifetime dual-comb microscopy using two-dimensional spectral mapping and frequency multiplexing of dual-optical-comb beats

    Full text link
    Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool for quantitative fluorescence imaging because fluorescence lifetime is independent of concentration of fluorescent molecules or excitation/detection efficiency and is robust to photobleaching. However, since FLIM is based on point-to-point measurements, mechanical scanning of a focal spot is needed for forming an image, which hampers rapid imaging. In this article, we demonstrate scan-less full-field FLIM based on a one-to-one correspondence between two-dimensional (2D) image pixels and frequency-multiplexed RF signals. A vast number of dual-optical-comb beats between dual optical frequency combs is effectively adopted for 2D spectral mapping and high-density frequency multiplexing in radio-frequency region. Bimodal images of fluorescence amplitude and lifetime are obtained with high quantitativeness from amplitude and phase spectra of fluorescence RF comb modes without the need for mechanical scanning. The proposed method will be useful for rapid quantitative fluorescence imaging in life science.Comment: 38 pages, 8 figures, 1 tabl

    Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine

    Get PDF
    Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies
    • …
    corecore