7,414 research outputs found

    Towards the improvement of textual anatomy image classification using image local features

    Full text link

    Comparing Fusion Techniques for the ImageCLEF 2013 Medical Case Retrieval Task

    Get PDF
    Retrieval systems can supply similar cases with a proven diagnosis to a new example case under observation to help clinicians during their work. The ImageCLEFmed evaluation campaign proposes a framework where research groups can compare case-based retrieval approaches. This paper focuses on the case-based task and adds results of the compound figure separation and modality classification tasks. Several fusion approaches are compared to identify the approaches best adapted to the heterogeneous data of the task. Fusion of visual and textual features is analyzed, demonstrating that the selection of the fusion strategy can improve the best performance on the case-based retrieval task

    Machine Learning Models to automate Radiotherapy Structure Name Standardization

    Get PDF
    Structure name standardization is a critical problem in Radiotherapy planning systems to correctly identify the various Organs-at-Risk, Planning Target Volumes and `Other\u27 organs for monitoring present and future medications. Physicians often label anatomical structure sets in Digital Imaging and Communications in Medicine (DICOM) images with nonstandard random names. Hence, the standardization of these names for the Organs at Risk (OARs), Planning Target Volumes (PTVs), and `Other\u27 organs is a vital problem. Prior works considered traditional machine learning approaches on structure sets with moderate success. We compare both traditional methods and deep neural network-based approaches on the multimodal vision-language prostate cancer patient data, compiled from the radiotherapy centers of the US Veterans Health Administration (VHA) and Virginia Commonwealth University (VCU) for structure name standardization. These de-identified data comprise 16,290 prostate structures. Our method integrates the multimodal textual and imaging data with Convolutional Neural Network (CNN)-based deep learning approaches such as CNN, Visual Geometry Group (VGG) network, and Residual Network (ResNet) and shows improved results in prostate radiotherapy structure name standardization. Our proposed deep neural network-based approach on the multimodal vision-language prostate cancer patient data provides state-of-the-art results for structure name standardization. Evaluation with macro-averaged F1 score shows that our CNN model with single-modal textual data usually performs better than previous studies. We also experimented with various combinations of multimodal data (masked images, masked dose) besides textual data. The models perform well on textual data alone, while the addition of imaging data shows that deep neural networks achieve better performance using information present in other modalities. Our pipeline can successfully standardize the Organs-at-Risk and the Planning Target Volumes, which are of utmost interest to the clinicians and simultaneously, performs very well on the `Other\u27 organs. We performed comprehensive experiments by varying input data modalities to show that using masked images and masked dose data with text outperforms the combination of other input modalities. We also undersampled the majority class, i.e., the `Other\u27 class, at different degrees and conducted extensive experiments to demonstrate that a small amount of majority class undersampling is essential for superior performance. Overall, our proposed integrated, deep neural network-based architecture for prostate structure name standardization can solve several challenges associated with multimodal data. The VGG network on the masked image-dose data combined with CNNs on the text data performs the best and presents the state-of-the-art in this domain

    Shangri-La: a medical case-based retrieval tool

    Get PDF
    Large amounts of medical visual data are produced in hospitals daily and made available continuously via publications in the scientific literature, representing the medical knowledge. However, it is not always easy to find the desired information and in clinical routine the time to fulfil an information need is often very limited. Information retrieval systems are a useful tool to provide access to these documents/images in the biomedical literature related to information needs of medical professionals. Shangri–La is a medical retrieval system that can potentially help clinicians to make decisions on difficult cases. It retrieves articles from the biomedical literature when querying a case description and attached images. The system is based on a multimodal retrieval approach with a focus on the integration of visual information connected to text. The approach includes a query–adaptive multimodal fusion criterion that analyses if visual features are suitable to be fused with text for the retrieval. Furthermore, image modality information is integrated in the retrieval step. The approach is evaluated using the ImageCLEFmed 2013 medical retrieval benchmark and can thus be compared to other approaches. Results show that the final approach outperforms the best multimodal approach submitted to ImageCLEFmed 2013

    Evaluating performance of biomedical image retrieval systems - an overview of the medical image retrieval task at ImageCLEF 2004-2013

    Get PDF
    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created

    Overview of the ImageCLEF 2013 medical tasks

    Get PDF
    In 2013, the tenth edition of the medical task of the Image-CLEF benchmark was organized. For the first time, the ImageCLEFmedworkshop takes place in the United States of America at the annualAMIA (American Medical Informatics Association) meeting even thoughthe task was organized as in previous years in connection with the otherImageCLEF tasks. Like 2012, a subset of the open access collection ofPubMed Central was distributed. This year, there were four subtasks:modality classification, compound figure separation, image–based andcase–based retrieval. The compound figure separation task was includeddue to the large number of multipanel images available in the literatureand the importance to separate them for targeted retrieval. More com-pound figures were also included in the modality classification task tomake it correspond to the distribution in the full database. The retrievaltasks remained in the same format as in previous years but a largernumber of tasks were available for image–based and case–based tasks.This paper presents an analysis of the techniques applied by the tengroups participating 2013 in ImageCLEFmed

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System

    Use Case Oriented Medical Visual Information Retrieval & System Evaluation

    Get PDF
    Large amounts of medical visual data are produced daily in hospitals, while new imaging techniques continue to emerge. In addition, many images are made available continuously via publications in the scientific literature and can also be valuable for clinical routine, research and education. Information retrieval systems are useful tools to provide access to the biomedical literature and fulfil the information needs of medical professionals. The tools developed in this thesis can potentially help clinicians make decisions about difficult diagnoses via a case-based retrieval system based on a use case associated with a specific evaluation task. This system retrieves articles from the biomedical literature when querying with a case description and attached images. This thesis proposes a multimodal approach for medical case-based retrieval with focus on the integration of visual information connected to text. Furthermore, the ImageCLEFmed evaluation campaign was organised during this thesis promoting medical retrieval system evaluation

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    • …
    corecore