542 research outputs found

    Characterization and Reduction of Noise in Manifold Representations of Hyperspectral Imagery

    Get PDF
    A new workflow to produce dimensionality reduced manifold coordinates based on the improvements of landmark Isometric Mapping (ISOMAP) algorithms using local spectral models is proposed. Manifold space from nonlinear dimensionality reduction better addresses the nonlinearity of the hyperspectral data and often has better per- formance comparing to the results of linear methods such as Minimum Noise Fraction (MNF). The dissertation mainly focuses on using adaptive local spectral models to fur- ther improve the performance of ISOMAP algorithms by addressing local noise issues and perform guided landmark selection and nearest neighborhood construction in local spectral subsets. This work could benefit the performance of common hyperspectral image analysis tasks, such as classification, target detection, etc., but also keep the computational burden low. This work is based on and improves the previous ENH- ISOMAP algorithm in various ways. The workflow is based on a unified local spectral subsetting framework. Embedding spaces in local spectral subsets as local noise models are first proposed and used to perform noise estimation, MNF regression and guided landmark selection in a local sense. Passive and active methods are proposed and ver- ified to select landmarks deliberately to ensure local geometric structure coverage and local noise avoidance. Then, a novel local spectral adaptive method is used to construct the k-nearest neighbor graph. Finally, a global MNF transformation in the manifold space is also introduced to further compress the signal dimensions. The workflow is implemented using C++ with multiple implementation optimizations, including using heterogeneous computing platforms that are available in personal computers. The re- sults are presented and evaluated by Jeffries-Matsushita separability metric, as well as the classification accuracy of supervised classifiers. The proposed workflow shows sig- nificant and stable improvements over the dimensionality reduction performance from traditional MNF and ENH-ISOMAP on various hyperspectral datasets. The computa- tional speed of the proposed implementation is also improved

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A manifold learning approach to target detection in high-resolution hyperspectral imagery

    Get PDF
    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying targets such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m \u3c\u3c d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space

    Sparse Coding for Hyperspectral Images Using Random Dictionary and Soft Thresholding

    Get PDF
    Many techniques have been recently developed for classification of hyperspectral images (HSI) including support vector machines (SVMs), neural networks and graph-based methods. To achieve good performances for the classification, a good feature representation of the HSI is essential. A great deal of feature extraction algorithms have been developed such as principal component analysis (PCA) and independent component analysis (ICA). Sparse coding has recently shown state-of-the-art performances in many applications including image classification. In this paper, we present a feature extraction method for HSI data motivated by a recently developed sparse coding based image representation technique. Sparse coding consists of a dictionary learning step and an encoding step. In the learning step, we compared two different methods, L1-penalized sparse coding and random selection for the dictionary learning. In the encoding step, we utilized a soft threshold activation function to obtain feature representations for HSI. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center (KSC) and compared our results with those obtained by a recently proposed method, supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WkNN) classifier. We have achieved better performances on this dataset in terms of the overall accuracy with a random dictionary. We conclude that this simple feature extraction framework might lead to more efficient HSI classification systems

    FSPE: Visualization of Hyperspectral Imagery Using Faithful Stochastic Proximity Embedding

    Get PDF
    Hyperspectral image visualization reduces color bands to three, but prevailing linear methods fail to address data characteristics, and nonlinear embeddings are computationally demanding. Qualitative evaluation of embedding is also lacking. We propose faithful stochastic proximity embedding (FSPE), which is a scalable and nonlinear dimensionality reduction method. FSPE considers the nonlinear characteristics of spectral signatures, yet it avoids the costly computation of geodesic distances that are often required by other nonlinear methods. Furthermore, we employ a pixelwise metric that measures the quality of hyperspectral image visualization at each pixel. FSPE outperforms the state-of-art methods by at least 12% on average and up to 25% in the qualitative measure. An implementation on graphics processing units is two orders of magnitude faster than the baseline. Our method opens the path to high-fidelity and real-time analysis of hyperspectral images
    corecore