70 research outputs found

    Upper bounds on the growth rates of hard squares and related models via corner transfer matrices

    Full text link
    We study the growth rate of the hard squares lattice gas, equivalent to the number of independent sets on the square lattice, and two related models - non-attacking kings and read-write isolated memory. We use an assortment of techniques from combinatorics, statistical mechanics and linear algebra to prove upper bounds on these growth rates. We start from Calkin and Wilf's transfer matrix eigenvalue bound, then bound that with the Collatz-Wielandt formula from linear algebra. To obtain an approximate eigenvector, we use an ansatz from Baxter's corner transfer matrix formalism, optimised with Nishino and Okunishi's corner transfer matrix renormalisation group method. This results in an upper bound algorithm which no longer requires exponential memory and so is much faster to calculate than a direct evaluation of the Calkin-Wilf bound. Furthermore, it is extremely parallelisable and so allows us to make dramatic improvements to the previous best known upper bounds. In all cases we reduce the gap between upper and lower bounds by 4-6 orders of magnitude.Comment: Also submitted to FPSAC 2015 conferenc

    Upper bounds on the growth rates of hard squares and related models via corner transfer matrices

    Get PDF
    International audienceWe study the growth rate of the hard squares lattice gas, equivalent to the number of independent sets on the square lattice, and two related models — non-attacking kings and read-write isolated memory. We use an assortment of techniques from combinatorics, statistical mechanics and linear algebra to prove upper bounds on these growth rates. We start from Calkin and Wilf’s transfer matrix eigenvalue bound, then bound that with the Collatz-Wielandt formula from linear algebra. To obtain an approximate eigenvector, we use an ansatz from Baxter’s corner transfer matrix formalism, optimised with Nishino and Okunishi’s corner transfer matrix renormalisation group method. This results in an upper bound algorithm which no longer requires exponential memory and so is much faster to calculate than a direct evaluation of the Calkin-Wilf bound. Furthermore, it is extremely parallelisable and so allows us to make dramatic improvements to the previous best known upper bounds. In all cases we reduce the gap between upper and lower bounds by 4-6 orders of magnitude.Nous Ă©tudions le taux de croissance du systĂšme de particules dur sur un rĂ©seau carrĂ©. Ce taux est Ă©quivalent au nombre d’ensembles indĂ©pendants sur le rĂ©seau carrĂ©. Nous Ă©tudions Ă©galement deux modĂšles qui lui sont reliĂ©s : les rois non-attaquants et la mĂ©moire isolĂ©e d’écriture-rĂ©Ă©criture. Nous utilisons techniques diverses issues de la combinatoire, de la mĂ©canique statistique et de l’algĂšbre linĂ©aire pour prouver des bornes supĂ©rieures sur ces taux de croissances. Nous partons de la borne de Calkin et Wilf sur les valeurs propres des matrices de transfert, que nous bornons Ă  l’aide de la formule de Collatz-Wielandt issue de l’algĂšbre linĂ©aire. Pour obtenir une valeur approchĂ©e d’un vecteur propre, nous utilisons un ansatz du formalisme de Baxter sur les matrices de transfert de coin, que nous optimisons avec la mĂ©thode de Nishino et Okunishi qui exploite ces matrices. Il en rĂ©sulte un algorithme pour calculer la borne supĂ©rieure qui n’est plus exponentiel en mĂ©moire et est ainsi beaucoup plus rapide qu’une Ă©valuation directe de la borne de Calkin-Wilf. De plus, cet algorithme est extrĂȘmement parallĂ©lisable et permet ainsi une nette amĂ©lioration des meilleurs bornes supĂ©rieures existantes. Dans tous les cas l’écart entre les bornes supĂ©rieures et infĂ©rieures s’en trouve rĂ©duit de 4 Ă  6 ordres de grandeur

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+Ï”)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor log⁥nlog⁥r\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+Ï”)(1+\epsilon)-approximation on such general family of graphs

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    ï»żUnsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. GerĂ€te werden zunehmend intelligenter - sie verfĂŒgen ĂŒber mehr und mehr Rechenleistung und hĂ€ufiger ĂŒber eigene Kommunikationsschnittstellen. Das beginnt bei einfachen HaushaltsgerĂ€ten und reicht ĂŒber Transportmittel bis zu großen ĂŒberregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der GerĂ€te heutzutage mobil und deshalb batteriebetrieben ist, begrĂŒndet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen fĂŒr eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche AnsĂ€tze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch hĂ€ufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer LeistungsfĂ€higkeit, was fĂŒr den Entwurf eines robusten und zuverlĂ€ssigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebrĂ€uchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zĂŒgige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. ZunĂ€chst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation ĂŒber Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die GĂŒte der erzielten Lösung zu steuern. Es ist außerdem weniger anfĂ€llig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende ParameterschĂ€tzung fĂŒr mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natĂŒrlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte SchĂ€tzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, fĂŒr die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkulĂ€re Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgĂŒltige SchĂ€tzgenauigkeit objektiv einschĂ€tzen zu können wird dann ein Framework fĂŒr die analytische Beschreibung der LeistungsfĂ€higkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen AusdrĂŒcken ist unser Ansatz allgemeiner, da keine Annahmen ĂŒber die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur VerfĂŒgung stehenden SchnappschĂŒsse beliebig klein sein kann. Dies fĂŒhrt auf vereinfachte AusdrĂŒcke fĂŒr den mittleren quadratischen SchĂ€tzfehler, die Schlussfolgerungen ĂŒber die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-VerhĂ€ltnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten SchĂ€tzverfahren gewinnen lĂ€sst. Außerdem werden Verfahren zum Finden einer gĂŒnstigen Relay-VerstĂ€rkungs-Strategie diskutiert. Bestehende AnsĂ€tze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-AnsĂ€tzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische AnsĂ€tze zum Finden der RelayverstĂ€rkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. FĂŒr den Spezialfall, in dem die EndgerĂ€te nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die LeistungsfĂ€higkeit dieser Verfahren bezĂŒglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre EffektivitĂ€t gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions

    Quantitative analysis of algorithms for compressed signal recovery

    Get PDF
    Compressed Sensing (CS) is an emerging paradigm in which signals are recovered from undersampled nonadaptive linear measurements taken at a rate proportional to the signal's true information content as opposed to its ambient dimension. The resulting problem consists in finding a sparse solution to an underdetermined system of linear equations. It has now been established, both theoretically and empirically, that certain optimization algorithms are able to solve such problems. Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2007), which is the focus of this thesis, is an established CS recovery algorithm which is known to be effective in practice, both in terms of recovery performance and computational efficiency. However, theoretical analysis of IHT to date suffers from two drawbacks: state-of-the-art worst-case recovery conditions have not yet been quantified in terms of the sparsity/undersampling trade-off, and also there is a need for average-case analysis in order to understand the behaviour of the algorithm in practice. In this thesis, we present a new recovery analysis of IHT, which considers the fixed points of the algorithm. In the context of arbitrary matrices, we derive a condition guaranteeing convergence of IHT to a fixed point, and a condition guaranteeing that all fixed points are 'close' to the underlying signal. If both conditions are satisfied, signal recovery is therefore guaranteed. Next, we analyse these conditions in the case of Gaussian measurement matrices, exploiting the realistic average-case assumption that the underlying signal and measurement matrix are independent. We obtain asymptotic phase transitions in a proportional-dimensional framework, quantifying the sparsity/undersampling trade-off for which recovery is guaranteed. By generalizing the notion of xed points, we extend our analysis to the variable stepsize Normalised IHT (NIHT) (Blumensath and Davies, 2010). For both stepsize schemes, comparison with previous results within this framework shows a substantial quantitative improvement. We also extend our analysis to a related algorithm which exploits the assumption that the underlying signal exhibits tree-structured sparsity in a wavelet basis (Baraniuk et al., 2010). We obtain recovery conditions for Gaussian matrices in a simplified proportional-dimensional asymptotic, deriving bounds on the oversampling rate relative to the sparsity for which recovery is guaranteed. Our results, which are the first in the phase transition framework for tree-based CS, show a further significant improvement over results for the standard sparsity model. We also propose a dynamic programming algorithm which is guaranteed to compute an exact tree projection in low-order polynomial time

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the ChvĂĄtal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    DIAS Research Report 2009

    Get PDF
    • 

    corecore