19 research outputs found

    Improved Linear Crosstalk Precompensation for DSL

    Get PDF
    Crosstalk is the major source of performance degradation in next generation DSL systems such as VDSL. In downstream communications transmitting modems are co- located at the central office. This allows crosstalk precompensation to be employed. In crosstalk precompensation the transmitted signal is pre-distorted such that the pre-distortion destructively interferes with the crosstalk introduced by the channel. Existing crosstalk precompensation techniques either give poor performance or require modification of customer premises equipment (CPE). This is impractical since there are millions of legacy CPE modems already in use. We present a novel crosstalk precompensation technique based on a diagonalization of the crosstalk channel matrix. This technique does not require modification of CPE. Furthermore, certain properties of the DSL channel ensure that this diagonalizing precompensator achieves near-optimal performance

    The Linear Zero-Forcing Crosstalk Canceller is Near-optimal in DSL Channels

    Get PDF
    The design and optimization of orthogonal frequency division multiplex (OFDM) systems typically take the following form: The design objective is usually to maximize the total sum rate which is the sum of individual rates in each frequency tone. The design constraints are usually linear constraints imposed across all tones. This paper explains why dual methods are ideally suited for this class of problems. The main result is the following: Regardless of whether the objective or the constraints are convex, the duality gap for this class of problems is always zero in the limit as the number of frequency tones goes to infinity. As the dual problem typically decouples into many smaller per-tone problems, solving the dual is much more efficient. This gives an efficient method to find the global optimum of non-convex optimization problems for the OFDM system. Multiuser optimal power allocation, optimal frequency planning, and optimal low-complexity crosstalk cancellation for vectored DSL are used to illustrate this point

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Full text link
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015, Selected Areas in Communications: Access Networks and Systems, 6-10 December, 201

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Get PDF
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate

    Iterative Spectrum Balancing for Digital Subscriber Lines

    Get PDF
    Dynamic spectrum management (DSM) is an important technique for mitigating crosstalk in DSL. One of the first DSM algorithms proposed, Iterative waterfilling (IW), has a low complexity and demonstrates the spectacular performance gains that are possible. Unfortunately IW tends to be highly suboptimal in mixed CO/RT deployments and upstream VDSL. Another DSM algorithm, Optimal spectrum balancing (OSB), uses a weighted rate-sum to find the theoretically optimal transmit spectra. Unfortunately its complexity scales exponentially with the number of lines in the binder N. Typical binders contain 25-100 lines, for which OSB is intractable. This paper presents a new iterative algorithm for spectrum management in DSL. The algorithm optimizes the weighted rate-sum in an iterative fashion, which leads to a quadratic, rather than exponential, complexity in N. The algorithm is tractable for large N and can be used to optimize entire binders. Simulations show that the algorithm performs very close to the theoretical optimum achieved by OSB

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Autonomous Spectrum Balancing for Digital Subscriber Lines

    Get PDF
    The main performance bottleneck of modern Digital Subscriber Line (DSL) networks is the crosstalk among different lines (users). By deploying Dynamic Spectrum Management (DSM) techniques and reducing excess crosstalks among users, a network operator can dramatically increase the data rates and service reach of broadband access. However, current DSM algorithms suffer from either substantial suboptimality in typical deployment scenarios or prohibitively high complexity due to centralized computation. This paper develops, analyzes, and simulates a new suite of DSM algorithms for DSL interference channel models called Autonomous Spectrum Balancing (ASB), for both synchronous and asynchronous transmission cases. In the synchronous case, the transmissions over different tones are orthogonal to each other. In the asynchronous case, the transmissions on different tones are coupled together due to intercarrier- interference. In both cases, ASB utilizes the concept of a 'reference line', which mimics a typical victim line in the interference channel. The basic procedure in ASB algorithms is simple: each user optimizes the weighted sum of the achievable rates on its own line and the reference line while assuming the interferences from other users as noise. Users then iterate until the target rate constraints are met. Good choices of reference line parameters are already available in industry standards, and the ASB algorithm makes the intuitions completely rigorous and theoretically sound. ASB is the first set of algorithms that is fully autonomous, has low complexity, and yet achieves near-optimal performance. It effectively solves the nonconvex and coupled optimization problem of DSL spectrum management, and overcomes the bottleneck of all previous DSM algorithms

    Multi-User Signal and Spectra Coordination for Digital Subscriber Lines

    Get PDF
    The appetite amongst consumers for ever higher data-rates seems insatiable. This booming market presents a huge opportunity for telephone and cable operators. It also presents a challenge: the delivery of broadband services to millions of customers across sparsely populated areas. Fully fibre-based networks, whilst technically the most advanced solution, are prohibitively expensive to deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as a stepping-stone to a fully fibre-based network, DSL operates over telephone lines that are already in place, minimizing the cost of deployment. The basic principle behind DSL technology is to increase data-rate by widening the transmission bandwidth. Unfortunately, operating at high frequencies, in a medium originally designed for voice-band transmission, leads to crosstalk between the different DSLs. Crosstalk is typically 10-15 dB larger than the background noise and is the dominant source of performance degradation in DSL. This thesis develops practical multi-user techniques for mitigating crosstalk in DSL. The techniques proposed have low complexity, low latency, and are compatible with existing customer premises equipment (CPE). In addition to being practical, the techniques also yield near-optimal performance, operating close to the theoretical multi-user channel capacity. Multi-user techniques are based on the coordination of the different users in a network, and this can be done on either a spectral or signal level

    Physical Layer Techniques for High Frequency Wireline Broadband Systems

    Get PDF
    This thesis collects contributions to wireline and wireless communication systems with an emphasis on multiuser and multicarrier physical layer technology. To deliver increased capacity, modern wireline access systems such as G.fast extend the signal bandwidth up from tens to hundreds of MHz. This ambitious development revealed a number of unforeseen hurdles such as the impact of impedance changes in various forms. Impedance changes have a strong effect on the performance of multi-user crosstalk mitigation techniques such as vectoring. The first part of the thesis presents papers covering the identification of one of these problems, a model describing why it occurs and a method to mitigate its effects, improving line stability for G.fast systems.A second part of the thesis deals with the effects of temperature changes on wireline channels. When a vectored (MIMO) wireline system is initialized, channel estimates need to be obtained. This thesis presents contributions on the feasibility of re-using channel coefficients to speed up the vectoring startup procedures, even after the correct coefficients have changed, e.g., due to temperature changes. We also present extensive measurement results showing the effects of temperature changes on copper channels using a temperature chamber and British cables. The last part of the thesis presents three papers on the convergence of physical layer technologies, more specifically the deployment of OFDM-based radio systems using twisted pairs in different ways. In one proposed scenario, the idea of using the access copper lines to deploy small cells inside users' homes is explored. The feasibility of the concept, the design of radio-heads and a practical scheme for crosstalk mitigation are presented in three contributions

    Mitigation of impulsive noise for SISO and MIMO G.fast system

    Get PDF
    To address the demand for high bandwidth data transmission over telephone transmission lines, International Telecommunication Union (ITU) has recently completed the fourth generation broadband (4GBB) copper access network technology, known as G.fast. Throughout this thesis, extensively investigates the wired broadband G.fast coding system and the novel impulsive noise reduction technique has been proposed to improve the performance of wired communications network in three different scenarios: single-line Discrete Multiple Tone (DMT)- G.fast system; a multiple input multiple-output (MIMO) DMTG.fast system, and MIMO G.fast system with different crosstalk cancellation methods. For each of these scenarios, however, Impulsive Noise (IN) is considered as the main limiting factor of performance system. In order to improve the performance of such systems, which use higher order QAM constellation such as G.fast system, this thesis examines the performance of DMT G.fast system over copper channel for six different higher signal constellations of M = 32, 128, 512, 2048, 8192 and 32768 in presence of IN modelled as the Middleton Class A (MCA) noise source. In contrast to existing work, this thesis presents and derives a novel equation of Optimal Threshold (OT) to improve the IN frequency domain mitigation methods applied to the G.fast standard over copper channel with higher QAM signal constellations. The second scenario, Multi-Line Copper Wire (MLCW) G.fast is adopted utilizing the proposed MLCW Chen model and is compared to a single line G-fast system by a comparative analysis in terms of Bit-Error-Rate(BER) performance of implementation of MLCW-DMT G.fast system. The third scenario, linear and non-linear crosstalk crosstalk interference cancellation methods are applied to MLCW G.fas and compared by a comparative analysis in terms of BER performance and the complexity of implementation.University of Technology for choosing me for their PhD scholarship and The Higher Committee For Education Development in Iraq(HCED
    corecore