139 research outputs found

    On the Effectiveness of Video Recolouring as an Uplink-model Video Coding Technique

    Get PDF
    For decades, conventional video compression formats have advanced via incremental improvements with each subsequent standard achieving better rate-distortion (RD) efficiency at the cost of increased encoder complexity compared to its predecessors. Design efforts have been driven by common multi-media use cases such as video-on-demand, teleconferencing, and video streaming, where the most important requirements are low bandwidth and low video playback latency. Meeting these requirements involves the use of computa- tionally expensive block-matching algorithms which produce excellent compression rates and quick decoding times. However, emerging use cases such as Wireless Video Sensor Networks, remote surveillance, and mobile video present new technical challenges in video compression. In these scenarios, the video capture and encoding devices are often power-constrained and have limited computational resources available, while the decoder devices have abundant resources and access to a dedicated power source. To address these use cases, codecs must be power-aware and offer a reasonable trade-off between video quality, bitrate, and encoder complexity. Balancing these constraints requires a complete rethinking of video compression technology. The uplink video-coding model represents a new paradigm to address these low-power use cases, providing the ability to redistribute computational complexity by offloading the motion estimation and compensation steps from encoder to decoder. Distributed Video Coding (DVC) follows this uplink model of video codec design, and maintains high quality video reconstruction through innovative channel coding techniques. The field of DVC is still early in its development, with many open problems waiting to be solved, and no defined video compression or distribution standards. Due to the experimental nature of the field, most DVC codec to date have focused on encoding and decoding the Luma plane only, which produce grayscale reconstructed videos. In this thesis, a technique called “video recolouring” is examined as an alternative to DVC. Video recolour- ing exploits the temporal redundancies between colour planes, reducing video bitrate by removing Chroma information from specific frames and then recolouring them at the decoder. A novel video recolouring algorithm called Motion-Compensated Recolouring (MCR) is proposed, which uses block motion estimation and bi-directional weighted motion-compensation to reconstruct Chroma planes at the decoder. MCR is used to enhance a conventional base-layer codec, and shown to reduce bitrate by up to 16% with only a slight decrease in objective quality. MCR also outperforms other video recolouring algorithms in terms of objective video quality, demonstrating up to 2 dB PSNR improvement in some cases

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    Design of High Throughput Reconfigurable LDPC CODEC

    Full text link
    Channel coding is an essential part of communication systems, which significantly reduces the error rate of receiving messages. Nowadays, iterative decoding methods play an important role in wireless communication such as 5G, Wi-Fi etc. Low-Density Parity-Check (LDPC) codes are one of the most used iterative decoding codes, which attract lots of interest in a wide range of applications. LDPC codes have a channel approaching capacity, which is practical for implementation as well. The thesis focuses on the design of high throughput reconfigurable LDPC channel codec with good performance. The main focus of this thesis is the design of a novel decoding algorithm for LDPC codes. The new decoding algorithm is configurable to adjust its performance and complexity, which is very flexible for applications. Its error correction capability is close to the sum-product algorithm but with significantly lower complexity. We further implement the LDPC encoder/decoder on FPGA, which is reconfigurable for 5G NR or user-defined LDPC codes. In particular, we apply the new decoding algorithm to the decoder and analyse its performance on hardware. Moreover, we compared the error detection performance of 5G NR CRC and LDPC Syndrome to investigate the necessity of using CRC decoding or LDPC syndrome check, or both in practical systems. At last, a 5G NR physical layer simulating SoC embedded system is built on FPGA for the verification of the encoder and decoder

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    On Transmission System Design for Wireless Broadcasting

    Get PDF
    This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspectSiirretty Doriast

    1.5 Gbit/s FPGA implementation of a fully-parallel turbo decoder designed for mission-critical machine-type communication applications

    No full text
    In wireless communication schemes, turbo codes facilitate near-capacity transmission throughputs by achieving reliable forward error correction. However, owing to the serial data dependencies imposed by the underlying Logarithmic Bahl-Cocke-Jelinek-Raviv (Log- BCJR) algorithm, the limited processing throughputs of conventional turbo decoder implementations impose a severe bottleneck upon the overall throughputs of realtime wireless communication schemes. Motivated by this, we recently proposed a Fully Parallel Turbo Decoder (FPTD) algorithm, which eliminates these serial data dependencies, allowing parallel processing and hence offering a significantly higher processing throughput. In this paper, we propose a novel resource-efficient version of the FPTD algorithm, which reduces its computational resource requirement by 50%, which enhancing its suitability for Field-Programmable Gate Array (FPGA) implementations. We propose a model FPGA implementation. When using a Stratix IV FPGA, the proposed FPTD FPGA implementation achieves an average throughput of 1.53 Gbit/s and an average latency of 0.56 s, when decoding frames comprising N=720 bits. These are respectively 13.2 times and 11.1 times superior to those of the state-of-the- art FPGA implementation of the Log-BCJR Long- Term Evolution (LTE) turbo decoder, when decoding frames of the same frame length at the same error correction capability. Furthermore, our proposed FPTD FPGA implementation achieves a normalized resource usage of 0.42 kALUTs Mbit/s , which is 5.2 times superior to that of the benchmarker decoder. Furthermore, when decoding the shortest N=40-bit LTE frames, the proposed FPTD FPGA implementation achieves an average throughput of 442 Mbit/s and an average latency of 0.18 s, which are respectively 21.1 times and 10.6 times superior to those of the benchmarker decoder. In this case, the normalized resource usage of 0.08 kALUTs Mbit/s is 146.4 times superior to that of the benchmarker decoder

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii
    corecore