15 research outputs found

    Stability Enhancement of Power System with UPFC Using Hybrid TLBO Algorithm

    Get PDF
    112–115Power sector's complexity has been increasing due to rising demand—distributed generation and deregulation have greatly increased the complexity of the power system. Flexible Alternating Current Transmission System (FACTS) devices improve the quality of power by increasing the power transfer capability. This paper proposes an optimal power flow analysis using a Modified Teaching Learning Based Optimization (MTLBO) algorithm followed by an optimal placement of UPFC in the system. The proposed analysis has been validated and implemented on an IEEE 30 bus system

    THE IMPACT OF THE UNIFIED POWER FLOW CONTROLLER ON MAXIMIZATION OF LOADABILITY OF ELECTRIC POWER GRID

    Get PDF
    The building of additional transmission network to meet the demand of the ever-increasing load is expensive, and time consuming. An alternative to constructing new lines is the incorporation of the Flexible Alternating Current Transmission System (FACTS); in which a Unified Power Flow Controller (UPFC) is a member of the ménage, which can be modelled as a combination of Static Var Compensator and Thyristor Control Series Compensator. This study determines the optimal location of the UPFC by randomly adding loads to the existing transmission network until the Fast Voltage Stability Index of one of the lines is at a critical point. This is the vital line in which UPFC components are added. The sizing of the components of the UPFC is determined using Artificial Bee Colony algorithm. The IEEE 30-bus network is exploited as the test bed. The results obtained reveal that the optimal positioning and sizing of the UPFC for the purpose of maximizing loadability of the grid when load angles are assumed to be negligible are the same as when the load angles are considered. The loadability of the test bed when UPFC is not injected in the grid is 440.376 MW, whereas, it is 837.915 MW when the UPFC is optimally located and sized; and this represents 90.27 %. The sizes of the shunt and series components of the UPFC that assist in realizing this maximization are -0.2780 pu and 0.1000 pu respectively

    THE IMPACT OF THE UNIFIED POWER FLOW CONTROLLER ON MAXIMIZATION OF LOADABILITY OF ELECTRIC POWER GRID

    Get PDF
    The building of additional transmission network to meet the demand of the ever-increasing load is expensive, and time consuming. An alternative to constructing new lines is the incorporation of the Flexible Alternating Current Transmission System (FACTS); in which a Unified Power Flow Controller (UPFC) is a member of the ménage, which can be modelled as a combination of Static Var Compensator and Thyristor Control Series Compensator. This study determines the optimal location of the UPFC by randomly adding loads to the existing transmission network until the Fast Voltage Stability Index of one of the lines is at a critical point. This is the vital line in which UPFC components are added. The sizing of the components of the UPFC is determined using Artificial Bee Colony algorithm. The IEEE 30-bus network is exploited as the test bed. The results obtained reveal that the optimal positioning and sizing of the UPFC for the purpose of maximizing loadability of the grid when load angles are assumed to be negligible are the same as when the load angles are considered. The loadability of the test bed when UPFC is not injected in the grid is 440.376 MW, whereas, it is 837.915 MW when the UPFC is optimally located and sized; and this represents 90.27 %. The sizes of the shunt and series components of the UPFC that assist in realizing this maximization are -0.2780 pu and 0.1000 pu respectively

    Stability Enhancement of Power System with UPFC Using Hybrid TLBO Algorithm

    Get PDF
    Power sector's complexity has been increasing due to rising demand—distributed generation and deregulation have greatly increased the complexity of the power system. Flexible Alternating Current Transmission System (FACTS) devices improve the quality of power by increasing the power transfer capability. This paper proposes an optimal power flow analysis using a Modified Teaching Learning Based Optimization (MTLBO) algorithm followed by an optimal placement of UPFC in the system. The proposed analysis has been validated and implemented on an IEEE 30 bus system

    Optimization of FACTS devices : classification, recent trends, and future outlook

    Get PDF
    Since the inception of industrialization, power system has been an indispensable aspect of economy. With the progression of time, technology has impalpably commingled into our lifestyle. Alongside blooming technologies, energy demand is proliferating and power companies are begetting energy at their best to quench it. Growing reliance on power system has brought its quality into more advertence. Various electronic devices and topologies have been invented to enhance power quality and reliability; numerous others are still underway. During the course, power system has grown to an intricate network of sources, loads and control devices, leading to various issues such as transmission congestion and high losses. This paper discusses ways to ameliorate congestion and gives an overview of relationship between our present energy resources and ecological threats like global warming. Moreover, it points out various power system problems such as energy losses and transients. The necessity of FACTS devices has also been elaborated alongside their classification and comparison. Finally, numerous topologies and optimization methods proposed in the technical literature have been classified and analyzed to alleviate power system conundrums, and a glimpse into future energy trends is presented
    corecore