685 research outputs found

    steam turbine control valve and actuation system modeling for dynamics analysis

    Get PDF
    Abstract The paper describes a study conducted on Steam Turbine control valve and actuation systems, which rule the machine final power production and rotational speed. A dynamic model developed in the Matlab/Simulink environment is proposed to support the analysis of the operational stability of the hydro-mechanical system as well as the failure modes that it may face during operation. The model was validated through specific field tests conducted on the actuation system at a cogeneration plant in Nuovo Pignone, Florence. The proposed work also underlines the requirements that new actuation technologies should fulfil in order to meet control valve system performance criteria

    Conventional Servo System to Direct Drive Actuators Why Does It Matter?

    Get PDF
    LecturesThis paper discusses the development of Actuators over a period of time. The purpose of an Actuator (servo system) is to operate steam turbine control valves. With the increasing demand for better control of steam valves and depleting support for conventional servo system, there has been a gradual shift to Direct drive Actuator. The conventional servo system consists of an E/H Actuator along with pilot valve, power cylinder and a complex system of linkages. The introduction of direct-drive actuators enables the Turbine OEM’s to completely eliminate the application of pilot valve and power cylinder and redesign the system for less space, better reliability and low maintenance. The major issue with conventional system is the large number of bearings, linkages and moving parts which had resulted in multiple failures over time and the complexity of the system which makes it very difficult to analyze the root cause of these failures. This paper presents the above failures and how the direct-drive actuators solves the issue by allowing OEM’s to design the system with minimum components and better analyze the system leading to high reliability and better optimization of the limited space around Turbine. This paper also discusses other factors which make the system highly reliable and redundant. While the users experience many benefits, it is also important to understand the issues associated with direct Actuators. The paper also lists these disadvantages along wit

    Fault Detection and Identification Method Based on Genetic Algorithms to Monitor Degradation of Electrohydraulic Servomechanisms

    Get PDF
    Electro Hydraulic Actuators (EHAs) keep their role as the leading solution for the control of current generation primary flight control systems: the main reason can be found in their high power to weight ratio, much better than other comparable technologies. To enhance efficiency and reliability of modern EHAs, it is possible to leverage the diagnostics and prognostics disciplines; these two tools allow reducing life cycle costs without losing reliability, and provide the bases for health management of integrated systems, in compliance with regulations. This paper is focused on the development of a fault detection algorithm able to identify the early signs of EHA faults, through the recognition of their precursors and related degradation patterns. Our methodology provides the advantage of anticipating incoming failures, triggering proper alerts for the maintenance team to schedule adequate corrective actions, such as the replacement of the degraded component. A new EHA model-based fault detection and identification (FDI) method is proposed; it is based on deterministic and heuristic solvers able to converge to the actual state of wear of the tested actuator. Three different progressive failure modes were chosen as test cases for the proposed FDI strategy: clogging of the first stage of the flapper-nozzle valve, spool-sleeve friction increase, and jack-cylinder friction increase. A dedicated simulation model was created for the purpose. The results highlighted that the method is adequate in robustness, since EHA malfunctions were identified with a low occurrence of false alarms or missed failures

    Third-order robust fuzzy sliding mode tracking control of a double-acting electrohydraulic actuator

    Get PDF
    In the industrial sector, an electrohydraulic actuator (EHA) system is a common technology. This system is often used in applications that demand high force, such as the steel, automotive, and aerospace industries. Furthermore, since most mechanical actuators' performance changes with time, it is considerably more difficult to assure its robustness over time. Therefore, this paper proposed a robust fuzzy sliding mode proportional derivative (FSMCPD) controller. The sliding mode controller (SMC) is accomplished by utilizing the exponential law and the Lyapunov theorem to ensure closed loop stability. By replacing the fuzzy logic control (FLC) function over the signum function, the chattering in the SMC controller has been considerably reduced. By using the sum of absolute errors as the objective function, particle swarm optimization (PSO) was used to optimize the controller parameter gain. The experiment results for trajectory tracking and the robustness test were compared with the sliding mode proportional derivative (SMCPD) controller to demonstrate the performance of the FSMCPD controller. According to the findings of the thorough study, the FSMCPD controller outperforms the SMCPD controller in terms of mean square error (MSE) and robustness index (RI)

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    NASA contributions to fluidic systems: A survey

    Get PDF
    A state-of-the art review of fluidic technology is presented. It is oriented towards systems applications rather than theory or design. It draws heavily upon work performed or sponsored by NASA in support of the space program and aeronautical research and development (R&D). Applications are emphasized in this survey because it is hoped that the examples described and the criteria presented for evaluating the suitability of fluidics to new applications will be of value to potential users of fluidic systems. This survey of the fluidics industry suggests some of the means whereby a company may use a fluidic system effectively either to manufacture a product or as part of the end product

    Failure Diagnosis and Prognosis of Safety Critical Systems: Applications in Aerospace Industries

    Get PDF
    Many safety-critical systems such as aircraft, space crafts, and large power plants are required to operate in a reliable and efficient working condition without any performance degradation. As a result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems. FDP systems attempt to use historical and current data of a system, which are collected from various measurements to detect faults, diagnose the types of possible failures, predict and manage failures in advance. This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some challenging issues from the FDP are investigated. This research work consists of three general directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based on data-driven and model-based approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In this regard, two dierent methods are developed. A modular FDP method based on a divide and conquer strategy is presented for the MFS system. The modular structure contains three components:1) fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit identifies types of faults based on an integration of neural network (NN) method and discrete wavelet transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian method. In another work, an innovative data-driven FDP method is developed for hydro-control valve systems. The idea is to use redundancy in multi-sensor data information and enhance the performance of the FDP system. Therefore, a combination of a feature selection method and support vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for forecasting RUL. Model-based methods employ high-delity physics-based model of a system for prognosis task. In this thesis, a novel model-based approach based on an integrated extended Kalman lter (EKF) and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual estimation method using EKF is performed to capture the progress of the failure. Later, a transformation is utilized to obtain a new measure to estimate the degradation path (DP). Moreover, the recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure is utilized to assess the performance of the proposed methods

    Electrohydraulic servovalves – past, present, and future

    Get PDF
    In 2016 it is 70 years since the first patent for a two-stage servovalve was filed, and 60 years since the double nozzle-flapper two-stage valve patent was granted. This paper reviews the many alternative servovalve designs that were investigated at that time, focusing on two-stage valves. The development of single-stage valves – otherwise known as direct drive or proportional valves – for industrial rather than aerospace application is also briefly reviewed. Ongoing research into alternative valve technology is then discussed, particularly focussing on piezoelectric actuation and the opportunities afforded by additive manufacturing
    • …
    corecore