270 research outputs found

    Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles

    Get PDF
    Nuclear receptors (NRs) are ligand dependent transcriptional factors and play a key role in reproduction, development, and homeostasis of organism. NRs are potential targets for treatment of cancer and other diseases such as inflammatory diseases, and diabetes. In this study, we present a comprehensive library of pocket conformational ensembles of thirteen human nuclear receptors (NRs), and test the ability of these ensembles to recognize their ligands in virtual screening, as well as predict their binding geometry, functional type, and relative binding affinity. 157 known NR modulators and 66 structures were used as a benchmark. Our pocket ensemble library correctly predicted the ligand binding poses in 94% of the cases. The models were also highly selective for the active ligands in virtual screening, with the areas under the ROC curves ranging from 82 to a remarkable 99%. Using the computationally determined receptor-specific binding energy offsets, we showed that the ensembles can be used for predicting selectivity profiles of NR ligands. Our results evaluate and demonstrate the advantages of using receptor ensembles for compound docking, screening, and profiling

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    Cheminformatic Approach for Deconvolution of Active Compounds in a Complex Mixture - phytoserms in Licorice

    Get PDF
    ABSTRACT After the validation of our in silico models by using the previous knowledge in this area the alerting phytochemicals from two Glycyrrhiza species (G. glabra and G. uralensis) were clustered. Exhaustive computational mining of licorice metabolome against selected endocrinal and metabolic targets led to the discovery of a unique class of compounds which belong to the dihydrostilbenoids (DHS) class appended with prenyl groups at various positions. To the best of our knowledge this interesting group of compounds has not been studied for their estrogenic activities or PXR activation. In addition some of the bis-prenylated DHS have been reported to be present only in G. uralensis. Another aspect of the current project was to predict the phase I primary metabolites of compounds found in both species of Glycyrrhiza and assess them with computational tools to predict their binding potential against both isoforms of hERs or drug metabolizing enzymes such as (CYP) inhibition models. Our investigations revealed estrogenic character for most of the predicted metabolites and have confirmed earlier reports of potential CYP3A4 and CYP1A2 inhibition. Compilation of such data is essential to gain a better understanding of the efficacy/safety of licorice extracts used in various botanical formularies. This approach with the involved cheminformatic tools has proven effective to yield rich information to support our understanding of traditional practices. It also can expand the role of botanical drugs for introducing new chemical entities (NCEs) and/or uncovering their liabilities at early stages. In this work we endeavored to comprehend the mechanism associated with the efficacy and safety of components reported in the licorice plant. We utilized smart screening techniques such as cheminformatics tools to reveal the high number of secondary metabolites produced by licorice which are capable of interfering with the human Estrogen Receptors (hERs) and/or PXR or other vital cytochrome P450 enzymes. The genus Glycyrrhiza encompasses several species exhibiting complex structural diversity of secondary metabolites and hence biological activities. The intricate nature of botanical remedies such as licorice rendered them obsolete for scientific research or medical industry. Understanding and finding the mechanisms of efficacy or safety for a plant-based therapy is very challenging yet it remains crucial and warranted. The licorice plant is known to have Selective Estrogen Receptor Modulatory effects (SERMs) with a spectrum of estrogenic and anti-estrogenic activities attributed to women’s health. On the contrary licorice extract was shown to induce pregnane xenobiotic receptor (PXR) which may manifest as a potential route for deleterious effects such as herb-drug interaction (HDI). While many studies attributed these divergent activities to a few classes of compounds such as liquiritigenin (a weak estrogenic SERM) or glycyrrhizin (weak PXR agonist) no attempt was made to characterize the complete set of compounds responsible for these divergent activities. A plethora of licorice components is undermined which might have the potential to be developed into novel phytoSERMS or to trigger undesirable adverse effects by altering drug metabolizing enzymes and thus pharmacokinetics. Thus we have ventured to synthesize a set of constitutional isomers of stilbenoids and DHS (archetypal of those found in licorice) with different prenylation patterns. Sixteen constitutional isomers of stilbenoids (M2-M10) and DHS (M12-M18) were successfully synthesized of which six of them (M8 M9 M14 M15 M17 and M18) were synthesized for the first time to be further tested and validated with cell-based methods for their estrogenic activities. We have unveiled a novel class of compounds which possess a strong PXR activation. These results which were in accord with the in silico prediction were observed for multiple synthesized prenylated stilbenoid and DHS by the luciferase reporter gene assay at ”M concentrations. Moreover this activation was further validated by the six-fold increase in mRNA expression of Cytochrome P450 3A4 (CYP3A4) where three representative compounds (M7 M10 and M15) exceeded the activation fold of the positive control

    Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    Get PDF
    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.Work in DRS’s laboratory is supported by the the European Union, Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council and Wellcome Trust. Work in ARV’s laboratory is supported by the Medical Research Council and Wellcome Trust. Work in DJH's laboratory is supported by the Medical Research Council under grant ML/L007266/1. All calculations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/) provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and were funded by the EPSRC under grants EP/F032773/1 and EP/J017639/1. GJM and ARV are affiliated with PhoreMost Ltd, Cambridge. We thank Alicia Higueruelo and John Skidmore for helpful discussions.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.chembiol.2015.04.01

    Development and application of fast fuzzy pharmacophore-based virtual screening methods for scaffold hopping

    Get PDF
    The goal of this thesis was the development, evaluation and application of novel virtual screening approaches for the rational compilation of high quality pharmacological screening libraries. The criteria for a high quality were a high probability of the selected molecules to be active compared to randomly selected molecules and diversity in the retrieved chemotypes of the selected molecules to be prepared for the attrition of single lead structures. For the latter criterion the virtual screening approach had to perform “scaffold hopping”. The first molecular descriptor that was explicitly reported for that purpose was the topological pharmacophore CATS descriptor, representing a correlation vector (CV) of all pharmacophore points in a molecule. The representation is alignment-free and thus renders fast screening of large databases feasible. In a first series of experiments the CATS descriptor was conceptually extended to the three-dimensional pharmacophore-pair CATS3D descriptor and the molecular surface based SURFCATS descriptor. The scaling of the CATS3D descriptor, the combination of CATS3D with different similarity metrics and the dependence of the CATS3D descriptor on the threedimensional conformations of the molecules in the virtual screening database were evaluated in retrospective screening experiments. The “scaffold hopping” capabilities of CATS3D and SURFCATS were compared to CATS and the substructure fingerprint MACCS keys. Prospective virtual screening with CATS3D similarity searching was applied for the TAR RNA and the metabotropic glutamate receptor 5 (mGlur5). A combination of supervised and unsupervised neural networks trained on CATS3D descriptors was applied prospectively to compile a focused but still diverse library of mGluR5 modulators. In a second series of experiments the SQUID fuzzy pharmacophore model method was developed, that was aimed to provide a more general query for virtual screening than the CATS family descriptors. A prospective application of the fuzzy pharmacophore models was performed for TAR RNA ligands. In a last experiment a structure-/ligand-based pharmacophore model was developed for taspase1 based on a homology model of the enzyme. This model was applied prospectively for the screening for the first inhibitors of taspase1. The effect of different similarity metrics (Euc: Euclidean distance, Manh: Manhattan distance and Tani: Tanimoto similarity) and different scaling methods (unscaled, scaling1: scaling by the number of atoms, and scaling2: scaling by the added incidences of potential pharmacophore points of atom pairs) on CATS3D similarity searching was evaluated in retrospective virtual screening experiments. 12 target classes of the COBRA database of annotated ligands from recent scientific literature were used for that purpose. Scaling2, a new development for the CATS3D descriptor, was shown to perform best on average in combination with all three similarity metrics (enrichment factor ef (1%): Manh = 11.8 ± 4.3, Euc = 11.9 ± 4.6, Tani = 12.8 ± 5.1). The Tanimoto coefficient was found to perform best with the new scaling method. Using the other scaling methods the Manhattan distance performed best (ef (1%): unscaled: Manh = 9.6 ± 4.0, Euc = 8.1 ± 3.5, Tani = 8.3 ± 3.8; scaling1: Manh = 10.3 ± 4.1, Euc = 8.8 ± 3.6, Tani = 9.1 ± 3.8). Since CATS3D is independent of an alignment, the dependence of a “receptor relevant” conformation might also be weaker compared to other methods like docking. Using such methods might be a possibility to overcome problems like protein flexibility or the computational expensive calculation of many conformers. To test this hypothesis, co-crystal structures of 11 target classes served as queries for virtual screening of the COBRA database. Different numbers of conformations were calculated for the COBRA database. Using only a single conformation already resulted in a significant enrichment of isofunctional molecules on average (ef (1%) = 6.0 ± 6.5). This observation was also made for ligand classes with many rotatable bonds (e.g. HIV-protease: 19.3 ± 6.2 rotatable bonds in COBRA, ef (1%) = 12.2 ± 11.8). On average only an improvement from using the maximum number of conformations (on average 37 conformations / molecule) to using single conformations of 1.1 fold was found. It was found that using more conformations actives and inactives equally became more similar to the reference compounds according to the CATS3D representations. Applying the same parameters as before to calculate conformations for the crystal structure ligands resulted in an average Cartesian RMSD of the single conformations to the crystal structure conformations of 1.7 ± 0.7 Å. For the maximum number of conformations, the RMSD decreased to 1.0 ± 0.5 Å (1.8 fold improvement on average). To assess the virtual screening performance and the scaffold hopping potential of CATS3D and SURFACATS, these descriptors were compared to CATS and the MACCS keys, a fingerprint based on exact chemical substructures. Retrospective screening of ten classes of the COBRA database was performed. According to the average enrichment factors the MACCS keys performed best (ef (1%): MACCS = 17.4 ± 6.4, CATS = 14.6 ± 5.4, CATS3D = 13.9 ± 4.9, SURFCATS = 12.2 ± 5.5). The classes, where MACCS performed best, consisted of a lower average fraction of different scaffolds relative to the number of molecules (0.44 ± 0.13), than the classes, where CATS performed best (0.65 ± 0.13). CATS3D was the best performing method for only a single target class with an intermediate fraction of scaffolds (0.55). SURFCATS was not found to perform best for a single class. These results indicate that CATS and the CATS3D descriptors might be better suited to find novel scaffolds than the MACCS keys. All methods were also shown to complement each other by retrieving scaffolds that were not found by the other methods. A prospective evaluation of CATS3D similarity searching was done for metabotropic glutamate receptor 5 (mGluR5) allosteric modulators. Seven known antagonists of mGluR5 with sub-micromolar IC50 were used as reference ligands for virtual screening of the 20,000 most drug-like compounds – as predicted by an artificial neural network approach – of the Asinex vendor database (194,563 compounds). Eight of 29 virtual screening hits were found with a Ki below 50 ”M in a binding assay. Most of the ligands were only moderately specific for mGluR5 (maximum of > 4.2 fold selectivity) relative to mGluR1, the most similar receptor to mGluR5. One ligand exhibited even a better Ki for mGluR1 than for mGluR5 (mGluR5: Ki > 100 ”M, mGluR1: Ki = 14 ”M). All hits had different scaffolds than the reference molecules. It was demonstrated that the compiled library contained molecules that were different from the reference structures – as estimated by MACCS substructure fingerprints – but were still considered isofunctional by both CATS and CATS3D pharmacophore approaches. Artificial neural networks (ANN) provide an alternative to similarity searching in virtual screening, with the advantage that they incorporate knowledge from a learning procedure. A combination of artificial neural networks for the compilation of a focused but still structurally diverse screening library was employed prospectively for mGluR5. Ensembles of neural networks were trained on CATS3D representations of the training data for the prediction of “mGluR5-likeness” and for “mGluR5/mGluR1 selectivity”, the most similar receptor to mGluR5, yielding Matthews cc between 0.88 and 0.92 as well as 0.88 and 0.91 respectively. The best 8,403 hits (the focused library: the intersection of the best hits from both prediction tasks) from virtually ranking the Enamine vendor database (ca. 1,000,000 molecules), were further analyzed by two self-organizing maps (SOMs), trained on CATS3D descriptors and on MACCS substructure fingerprints. A diverse and representative subset of the hits was obtained by selecting the most similar molecules to each SOM neuron. Binding studies of the selected compounds (16 molecules from each map) gave that three of the molecules from the CATS3D SOM and two of the molecules from the MACCS SOM showed mGluR5 binding. The best hit with a Ki of 21 ”M was found in the CATS3D SOM. The selectivity of the compounds for mGluR5 over mGluR1 was low. Since the binding pockets in the two receptors are similar the general CATS3D representation might not have been appropriate for the prediction of selectivity. In both SOMs new active molecules were found in neurons that did not contain molecules from the training set, i. e. the approach was able to enter new areas of chemical space with respect to mGluR5. The combination of supervised and unsupervised neural networks and CATS3D seemed to be suited for the retrieval of dissimilar molecules with the same class of biological activity, rather than for the optimization of molecules with respect to activity or selectivity. A new virtual screening approach was developed with the SQUID (Sophisticated Quantification of Interaction Distributions) fuzzy pharmacophore method. In SQUID pairs of Gaussian probability densities are used for the construction of a CV descriptor. The Gaussians represent clusters of atoms comprising the same pharmacophoric feature within an alignment of several active reference molecules. The fuzzy representation of the molecules should enhance the performance in scaffold hopping. Pharmacophore models with different degrees of fuzziness (resolution) can be defined which might be an appropriate means to compensate for ligand and receptor flexibility. For virtual screening the 3D distribution of Gaussian densities is transformed into a two-point correlation vector representation which describes the probability density for the presence of atom-pairs, comprising defined pharmacophoric features. The fuzzy pharmacophore CV was used to rank CATS3D representations of molecules. The approach was validated by retrospective screening for cyclooxygenase 2 (COX-2) and thrombin ligands. A variety of models with different degrees of fuzziness were calculated and tested for both classes of molecules. Best performance was obtained with pharmacophore models reflecting an intermediate degree of fuzziness. Appropriately weighted fuzzy pharmacophore models performed better in retrospective screening than CATS3D similarity searching using single query molecules, for both COX-2 and thrombin (ef (1%): COX-2: SQUID = 39.2., best CATS3D result = 26.6; Thrombin: SQUID = 18.0, best CATS3D result = 16.7). The new pharmacophore method was shown to complement MOE pharmacophore models. SQUID fuzzy pharmacophore and CATS3D virtual screening were applied prospectively to retrieve novel scaffolds of RNA binding molecules, inhibiting the Tat-TAR interaction. A pharmacophore model was built up from one ligand (acetylpromazine, IC50 = 500 ”M) and a fragment of another known ligand (CGP40336A), which was assumed to bind with a comparable binding mode as acetylpromazine. The fragment was flexible aligned to the TAR bound NMR conformation of acetylpromazine. Using an optimized SQUID pharmacophore model the 20,000 most druglike molecules from the SPECS database (229,658 compounds) were screened for Tat-TAR ligands. Both reference inhibitors were also applied for CATS3D similarity searching. A set of 19 molecules from the SQUID and CATS3D results was selected for experimental testing. In a fluorescence resonance energy transfer (FRET) assay the best SQUID hit showed an IC50 value of 46 ”M, which represents an approximately tenfold improvement over the reference acetylpromazine. The best hit from CATS3D similarity searching showed an IC50 comparable to acetylpromazine (IC50 = 500 ”M). Both hits contained different molecular scaffolds than the reference molecules. Structure-based pharmacophores provide an alternative to ligand-based approaches, with the advantage that no ligands have to be known in advance and no topological bias is introduced. The latter is e.g. favorable for hopping from peptide-like substrates to drug-like molecules. A homology model of the threonine aspartase taspase1 was calculated based on the crystal structures of a homologous isoaspartyl peptidase. Docking studies of the substrate with GOLD identified a binding mode where the cleaved bond was situated directly above the reactive N-terminal threonine. The predicted enzyme-substrate complex was used to derive a pharmacophore model for virtual screening for novel taspase1 inhibitors. 85 molecules were identified from virtual screening with the pharmacophore model as potential taspase1- inhibitors, however biochemical data was not available before the end of this thesis. In summary this thesis demonstrated the successful development, improvement and application of pharmacophore-based virtual screening methods for the compilation of molecule-libraries for early phase drug development. The highest potential of such methods seemed to be in scaffold hopping, the non-trivial task of finding different molecules with the same biological activity.Ziel dieser Arbeit war die Entwicklung, Untersuchung und Anwendung von neuen virtuellen Screening-Verfahren fĂŒr den rationalen Entwurf hoch-qualitativer MolekĂŒl-Datenbanken fĂŒr das pharmakologische Screening. Anforderung fĂŒr eine hohe QualitĂ€t waren eine hohe a priori Wahrscheinlichkeit fĂŒr das Vorhandensein aktiver MolekĂŒle im Vergleich zu zufĂ€llig zusammengestellten Bibliotheken, sowie das Vorhandensein einer Vielfalt unterschiedlicher Grundstrukturen unter den selektierten MolekĂŒlen, um gegen den Ausfall einzelner Leitstrukturen in der weiteren Entwicklung abgesichert zu sein. Notwendig fĂŒr die letztere Eigenschaft ist die FĂ€higkeit eines Verfahrens zum „GrundgerĂŒst-Springen“. Der erste MolekĂŒl-Deskriptor, der explizit fĂŒr das „GrundgerĂŒst-Springen“ eingesetzt wurde war der CATS Deskriptor – ein topologischer Korrelations-Vektor („correlation vector“, CV) ĂŒber alle Pharmakophor-Punkte eines MolekĂŒls. Der Vergleich von MolekĂŒlen ĂŒber den CATS Deskriptor geschieht ohne eine Überlagerung der MolekĂŒle, was den effizienten Einsatz solcher Verfahren fĂŒr sehr große MolekĂŒl-Datenbanken ermöglicht. In einer ersten Serie von Versuchen wurde der CATS Deskriptor erweitert zu dem dreidimensionalen CATS3D Deskriptor und dem auf der MolekĂŒl-OberflĂ€che basierten SURFCATS Deskriptor. In retrospektiven Studien wurde fĂŒr diese Deskriptoren der Einfluss verschiedener Skalierungs-Methoden, die Kombination mit unterschiedlichen Ähnlichkeits- Metriken und die Auswirkung verschiedener dreidimensionaler Konformationen untersucht. Weiter wurden das Potential der entwickelten Deskriptoren CATS3D und SURFCATS im „GrundgerĂŒst-Springen“ mit CATS und dem Substruktur-Fingerprint MACCS keys verglichen. Prospektive Anwendungen der CATS3D Ähnlichkeitssuche wurden fĂŒr die TARRNA und den metabotropen Glutamat Rezeptor 5 (mGluR5) durchgefĂŒhrt. Eine Kombination von ĂŒberwachten und unĂŒberwachten neuronalen Netzen wurde prospektiv fĂŒr die Zusammenstellung einer fokussierten aber dennoch diversen Bibliothek von mGluR5 Modulatoren eingesetzt. In einer zweiten Reihe von Versuchen wurde der SQUID Fuzzy Pharmakophor Ansatz entwickelt, mit dem Ziel zu einer noch generelleren MolekĂŒl- Beschreibung als mit den Deskriptoren aus der CATS Familie zu gelangen. Eine prospektive Anwendung der „Fuzzy Pharmakophor“ Methode wurde fĂŒr die TAR-RNA durchgefĂŒhrt. In einem letzten Versuch wurde fĂŒr Taspase1 ein Struktur-/Liganden-basiertes Pharmakophor- Modell auf der Grundlage eines Homologie-Modells des Enzyms entwickelt. Dieses wurde fĂŒr das prospektive Screening nach Taspase1-Inhibitoren eingesetzt. Der Einfluss verschiedener Ähnlichkeits-Metriken (Euk: Euklidische Distanz, Manh: Manhattan Distanz, Tani: Tanimoto Ähnlichkeit) und verschiedener Skalierungs-Methoden (Ohne-Skalierung, Skalierung1: Skalierung aller Werte nach der Anzahl Atome, Skalierung2: Skalierung der Werte eines Paares von Pharmakophor-Punkten entsprechend der Summe aller Pharmakophor-Punkte mit denselben Pharmakophor-Typen) auf die Ähnlichkeits-Suche mit CATS3D wurde in retrospektiven virtuellen Screening Experimenten untersucht. FĂŒr diesen Zweck wurden 12 verschiedene Klassen von Rezeptoren und Enzymen aus der COBRA Datenbank von annotierten Liganden aus der jĂŒngeren wissenschaftlichen Literatur eingesetzt. Skalierung2, eine neue Entwicklung fĂŒr CATS3D, zeigte im Durchschnitt die beste Performanz in Kombination mit allen drei Ähnlichkeits-Metriken (Anreicherungs-Faktor ef (1%): Manh = 11,8 ± 4,3; Euk = 11,9 ± 4,6; Tani = 12,8 ± 5,1). Die Kombination von Skalierung2 mit dem Tanimoto Ähnlichkeits-Koeffizienten lieferte die besten Ergebnisse. In Kombination mit den anderen Skalierungen brachte die Manhattan Distanz die besten Ergebnisse (ef (1%): Ohne-Skalierung: Manh = 9,6 ± 4,0; Euk = 8,1 ± 3,5; Tani = 8,3 ± 3,8; Skalierung1: Manh = 10,3 ± 4,1; Euk = 8,8 ± 3,6; Tani = 9,1 ± 3,8). Da die CATS3D Ähnlichkeits-Suche unabhĂ€ngig von der Überlagerung einzelner MolekĂŒle ist, könnte ebenfalls eine gewisse UnabhĂ€ngigkeit von der vorhandenen 3D Konformation bestehen. Eine solche UnabhĂ€ngigkeit wĂ€re interessant um die zeitaufwendige Berechnung multipler Konformationen zu umgehen. Um diese Hypothese zu untersuchen wurden Co-Kristalle von Liganden aus 11 Klassen von Rezeptoren und Enzymen ausgewĂ€hlt, um als Anfrage-Strukturen im virtuellen Screening in der COBRA Datenbank zu dienen. Verschiedene Versionen der COBRA Datenbank mit unterschiedlicher Anzahl Konformationen wurden berechnet. Bereits mit einer einzigen Konformation pro MolekĂŒl konnte im Mittel eine deutliche Anreicherung an aktiven MolekĂŒlen beobachte werden (ef (1%) = 6,0 ± 6,5). Diese Beobachtung beinhaltete auch Klassen von MolekĂŒlen mit vielen rotierbaren Bindungen. (z.B. HIV-Protease: 19,3 ± 6,2 rotierbare Bindungen in COBRA, ef (1%) = 12,2 ± 11,8). Im Mittel konnten dazu bei Verwendung der maximalen Anzahl Konformationen (durchschnittlich 37 Konformationen / MolekĂŒl) nur eine Verbesserung von 1.1 festgestellt werden. Nach der CATS3D Ähnlichkeit wurden die inaktiven MolekĂŒle im gleichen Maß Ă€hnlicher zu den Referenzen als die aktiven MolekĂŒle. Zum Vergleich konnte durch Verwendung multipler statt einzelner Konformationen eine 1,8-fache Verbesserung des RMSD zu den Konformationen aus den Kristall-Struktur Konformationen erreicht werden (einzelne Konformationen: 1,7 ± 0,7 Å; max. Konformationen: 1,0 ± 0,5 Å). Um die LeistungsfĂ€higkeit von CATS3D und SURFCATS im virtuellen Screening und im GrundgerĂŒst-Springen zu beurteilen, wurden diese Deskriptoren mit CATS und den MACCS keys, einem Fingerprint basierend auf exakten chemischen Substrukturen, verglichen. FĂŒr die retrospektive Analyse wurden 10 Klassen von Rezeptoren und Enzymen aus der COBRA Datenbank ausgewĂ€hlt. Nach den mittleren Anreicherungs-Faktoren ergaben sich fĂŒr MACCS die besten Resultate (ef (1%): MACCS = 17,4 ± 6,4; CATS = 14,6 ± 5,4; CATS3D = 13,9 ± 4,9; SURFCATS = 12,2 ± 5,5). Es zeigte sich, dass die Klassen, in denen MACCS die besten Ergebnisse erzielen konnte, einen geringen gemittelten Anteil von verschiedenen GrundgerĂŒsten aufwiesen im VerhĂ€ltnis zu der Anzahl an MolekĂŒlen (0,44 ± 0,13) als die Klassen, in denen CATS am besten war (0,65 ± 0,13). CATS3D war nur in einer Klasse mit einem mittleren Anteil von GrundgerĂŒsten (0,55) die beste Methode. SURFCATS war fĂŒr keine Klasse besser als alle anderen Methoden. Diese Ergebnisse deuten darauf hin, dass Methoden wie CATS und CATS3D besser geeignet sind, um neue GrundgerĂŒste zu finden. Es konnte weiter gezeigt werden, dass sich die Methoden einander ergĂ€nzen, dass also mit jeder Methode GrundgerĂŒste gefunden werden konnten, die mit keiner der anderen Methoden gefunden werden konnten. Eine prospektive Anwendung wurde fĂŒr CATS3D in der Suche nach neuen allosterischen Modulatoren des metabotropen Glutamat Rezeptors 5 (mGluR5) durchgefĂŒhrt. Sieben bekannte allosterische mGluR5 Antagonisten mit sub-mikromolaren IC50 Werten wurde als Referenzen eingesetzt. Das virtuelle Screening wurde auf den 20.000 von einem kĂŒnstlichen neuronalen Netz als am wirkstoff-artigsten vorhergesagten MolekĂŒlen der Asinex Datenbank (194.563 MolekĂŒle) durchgefĂŒhrt. Acht der 29 gefundenen Hits aus dem virtuellen Screening zeigten Ki Werte unter 50 ”M in einem Bindungs-Assay. Die Mehrheit der Liganden zeigte nur eine geringe SelektivitĂ€t (Maximum > 4,2-fach) gegenĂŒber mGluR1, dem Ă€hnlichsten Rezeptor zu mGluR5. Einer der Liganden zeigte einen besseren Ki fĂŒr mGluR1 als fĂŒr mGluR5 (mGluR5: Ki > 100 ”M, mGluR1: Ki = 14 ”M). Alle gefundenen MolekĂŒle zeigten verschiedene GrundgerĂŒste als die Referenz MolekĂŒle. Es konnte gezeigt werden, dass die zusammengestellte Bibliothek von den MACCS keys als unterschiedlich zu den Referenz Strukturen betrachtet wurden, von CATS und CATS3D aber noch als isofunktional betracht wurden. KĂŒnstliche neuronal Netze („artificial neural net“, ANN) bieten eine Alternative zur Ähnlichkeits-Suche im virtuellen Screening mit dem Vorteil, dass in einer Serie von Liganden enthaltenes implizites Wissen ĂŒber eine Lernprozedur in ein Modell integrierte werden kann. Eine Kombination von ANNs fĂŒr die Zusammenstellung einer fokussierten aber dennoch diversen MolekĂŒl-Bibliothek wurde prospektiv fĂŒr die Suche nach mGluR5 Antagonisten eingesetzt. Gruppen von ANNs wurden auf den Basis von CATS3D ReprĂ€sentationen fĂŒr die Vorhersage von „mGluR5-artigkeit“ und „mGluR5/mGluR1 SelektivitĂ€t“ trainiert. Dabei ergaben sich Matthews cc zwischen 0,88 und 0,92 sowie zwischen 0,88 und 0,91. Die besten 8.403 Hits (die Schnittmenge der besten Hits aus beiden Vorhersagen) aus einem virtuellen Screening der Enamine Datenbank (ca. 1.000.000 MolekĂŒle) ergab die fokussierte Bibliothek. Diese wurde weiter mit Selbstor

    Tailoring Toll-like Receptor 8 Ligands for Balancing Immune Response and Inflammation

    Get PDF
    Toll-like receptors (TLRs) play a central role in innate immunity by recognising invading pathogens and host-derived danger signals and initiating the inflammatory response. Aberrant TLR response is involved in the pathogenesis of cancers, infections, autoimmune disorders and allergic diseases. Therefore, TLRs represent attractive targets for novel therapeutic agents. The PhD project's main research aim is to discover novel small molecule modulators of Toll-like receptor 8 (TLR8) and understand their mechanisms of action using computational approaches. TLR8 crystal structure is solved, and several modulators are known from previous drug screens. Therefore, TLR8 is a promising target for rational computer-aided development of novel drug candidates. In the initial phase of the project, the main goal was to study relevant structural features in available crystal structures of TLR8. The focus was on the dimerisation interface because of its role in the binding of ligands and subsequent activation of the receptor. Additionally, we studied the conservation of the relevant structural features across the closely related TLRs. The second part shifts the focus to the binding of the small molecules to TLR8. We investigated interactions between the known ligands and TLR8 and used it to develop the most plausible 3D pharmacophore model. Subsequently, we employed the developed 3D pharmacophore model in virtual screening to identify novel modulators of TLR8. We identified a pyrimidine-based compound that inhibits TLR8-mediated signalling in the micromolar concentration range. The potent anti-inflammatory and dose-dependent response has been confirmed in a series of derivatives of this initial virtual hit, which allowed for a detailed elucidation of structure-activity relationships (SAR) and more precise description of the binding mode. Conclusively, we have developed a novel and promising pyrimidine-based TLR8 inhibitors in silico and confirmed their biological activity, selectivity and low cytotoxicity in vitro. Results from the study on TLR8 represent a solid basis for the future design of small molecule TLR modulators as novel therapeutic agents for modulating immune response and inflammation.Toll-like Rezeptoren (TLRs) spielen eine zentrale Rolle in angeborenen Immunsystem, indem sie eindringende Pathogene sowie endogene Gefahrensignale erkennen und EntzĂŒndungsreaktionen einleiten. TLRs sind an der Pathogenese von Krebserkrankungen, Infektionen, Autoimmunerkrankungen und allergischen Erkrankungen beteiligt. Aus diesem Grund stellen TLRs attraktive Ziele fĂŒr neue, niedermolekulare Wirkstoffe dar. Das Hauptziel dieses Promotionsprojekts ist die Entdeckung neuer niedermolekularer Modulatoren des Toll-like-Rezeptors 8 (TLR8) und das VerstĂ€ndnis ihrer Wirkmechanismen mit Hilfe computergestĂŒtzter AnsĂ€tze. Die Kristallstruktur von TLR8 ist verfĂŒgbar und mehrere Modulatoren sind aus frĂŒheren Wirkstoffscreens bekannt. Daher ist TLR8 ein vielversprechendes Ziel fĂŒr die rationale computergestĂŒtzte Entwicklung neuer Wirkstoffkandidaten. Am Beginn des Projekts bestand das Hauptziel darin, relevante strukturelle Merkmale in den verfĂŒgbaren Kristallstrukturen von TLR8 zu untersuchen. Der Fokus lag dabei auf dem Dimerisierungsbereich, da dieser eine wichtige Rolle bei der Bindung von Liganden und der anschließenden Aktivierung des Rezeptors spielt. ZusĂ€tzlich untersuchten wir die Konservierung der relevanten Strukturmerkmale ĂŒber die eng verwandten TLRs hinweg. Der zweite Teil verlagert den Fokus auf die Bindung kleiner MolekĂŒle an TLR8. Wir untersuchten die Interaktionen zwischen den bekannten Liganden und TLR8 und entwickelten daraus systemtisch ein 3D-Pharmakophormodell. Anschließend setzten wir das entwickelte 3D-Pharmakophormodell im virtuellen Screening ein, um neuartige Modulatoren des TLR8 zu identifizieren. Wir identifizierten ein Pyrimidin-Analogon, das die TLR8- vermittelte Signalweiterleitung im mikromolaren Konzentrationsbereich hemmt. Die potente entzĂŒndungshemmende und dosisabhĂ€ngige Wirkung wurde in einer kleinen Serie von Analoga bestĂ€tigt. Schließlich optimierten wir die identifizierten Pyrimidinverbindungen weiter, was eine detailliertere Struktur-AktivitĂ€ts-Analyse und eine genauere AufklĂ€rung des Bindungsmodus ermöglichte. Zusammenfassend haben wir neuartige und vielversprechende TLR8-Inhibitoren auf Pyrimidinbasis in silico entwickelt und ihre in vitro biologische AktivitĂ€t, SelektivitĂ€t und geringe ZytotoxizitĂ€t bestĂ€tigt. Die Ergebnisse der Studie zu TLR8 helfen uns, die Prozesse zu verstehen, die fĂŒr ein erfolgreiches Wirkstoffdesign auch bei anderen TLR notwendig sind und stellen eine gute Ausgangsbasis dar, um in Zukunft optimierte, niedermolekulare TLR- Modulatoren zu entwickeln und damit EntzĂŒndung und die Immunreaktion effizient zu modulieren

    Mind the Gap - Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence

    Get PDF
    G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand–receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs

    Next generation 3D pharmacophore modeling

    Get PDF
    3D pharmacophore models are three‐dimensional ensembles of chemically defined interactions of a ligand in its bioactive conformation. They represent an elegant way to decipher chemically encoded ligand information and have therefore become a valuable tool in drug design. In this review, we provide an overview on the basic concept of this method and summarize key studies for applying 3D pharmacophore models in virtual screening and mechanistic studies for protein functionality. Moreover, we discuss recent developments in the field. The combination of 3D pharmacophore models with molecular dynamics simulations could be a quantum leap forward since these approaches consider macromolecule–ligand interactions as dynamic and therefore show a physiologically relevant interaction pattern. Other trends include the efficient usage of 3D pharmacophore information in machine learning and artificial intelligence applications or freely accessible web servers for 3D pharmacophore modeling. The recent developments show that 3D pharmacophore modeling is a vibrant field with various applications in drug discovery and beyond
    • 

    corecore