168,637 research outputs found

    Exponentially Faster Massively Parallel Maximal Matching

    Full text link
    The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, however, we still have a far more limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω(1)n^{1+\Omega(1)} per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm a variant of which was conjectured to work by Czumaj et al. [STOC'18]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among some other results, leads to an O(loglogΔ)O(\log \log \Delta) round algorithm for maximal matching with O(n)O(n) space (or even mildly sublinear in nn using standard techniques). As an immediate corollary, we get a 22 approximate minimum vertex cover in essentially the same rounds and space. This is the best possible approximation factor under standard assumptions, culminating a long line of research. It also leads to an improved O(loglogΔ)O(\log\log \Delta) round algorithm for 1+ε1 + \varepsilon approximate matching. All these results can also be implemented in the congested clique model within the same number of rounds.Comment: A preliminary version of this paper is to appear in the proceedings of The 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2019

    Distributed Approximate Maximum Matching in the CONGEST Model

    Get PDF
    We study distributed algorithms for the maximum matching problem in the CONGEST model, where each message must be bounded in size. We give new deterministic upper bounds, and a new lower bound on the problem. We begin by giving a distributed algorithm that computes an exact maximum (unweighted) matching in bipartite graphs, in O(n log n) rounds. Next, we give a distributed algorithm that approximates the fractional weighted maximum matching problem in general graphs. In a graph with maximum degree at most Delta, the algorithm computes a (1-epsilon)-approximation for the problem in time O(log(Delta W)/epsilon^2), where W is a bound on the ratio between the largest and the smallest edge weight. Next, we show a slightly improved and generalized version of the deterministic rounding algorithm of Fischer [DISC \u2717]. Given a fractional weighted maximum matching solution of value f for a given graph G, we show that in time O((log^2(Delta)+log^*n)/epsilon), the fractional solution can be turned into an integer solution of value at least (1-epsilon)f for bipartite graphs and (1-epsilon) * (g-1)/g * f for general graphs, where g is the length of the shortest odd cycle of G. Together with the above fractional maximum matching algorithm, this implies a deterministic algorithm that computes a (1-epsilon)* (g-1)/g-approximation for the weighted maximum matching problem in time O(log(Delta W)/epsilon^2 + (log^2(Delta)+log^* n)/epsilon). On the lower-bound front, we show that even for unweighted fractional maximum matching in bipartite graphs, computing an (1 - O(1/sqrt{n}))-approximate solution requires at least Omega~(D+sqrt{n}) rounds in CONGEST. This lower bound requires the introduction of a new 2-party communication problem, for which we prove a tight lower bound

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs

    Full text link
    As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms that solve classical graph problems, such as maximum matching and minimum vertex cover, on large datasets. For massive inputs, several different computational models have been introduced, including the streaming model, the distributed communication model, and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-style computation. In each model, algorithms are analyzed in terms of resources such as space used or rounds of communication needed, in addition to the more traditional approximation ratio. In this paper, we give a single unified approach that yields better approximation algorithms for matching and vertex cover in all these models. The highlights include: * The first one pass, significantly-better-than-2-approximation for matching in random arrival streams that uses subquadratic space, namely a (1.5+ϵ)(1.5+\epsilon)-approximation streaming algorithm that uses O(n1.5)O(n^{1.5}) space for constant ϵ>0\epsilon > 0. * The first 2-round, better-than-2-approximation for matching in the MPC model that uses subquadratic space per machine, namely a (1.5+ϵ)(1.5+\epsilon)-approximation algorithm with O(mn+n)O(\sqrt{mn} + n) memory per machine for constant ϵ>0\epsilon > 0. By building on our unified approach, we further develop parallel algorithms in the MPC model that give a (1+ϵ)(1 + \epsilon)-approximation to matching and an O(1)O(1)-approximation to vertex cover in only O(loglogn)O(\log\log{n}) MPC rounds and O(n/polylog(n))O(n/poly\log{(n)}) memory per machine. These results settle multiple open questions posed in the recent paper of Czumaj~et.al. [STOC 2018]

    Parameterized Distributed Algorithms

    Get PDF
    In this work, we initiate a thorough study of graph optimization problems parameterized by the output size in the distributed setting. In such a problem, an algorithm decides whether a solution of size bounded by k exists and if so, it finds one. We study fundamental problems, including Minimum Vertex Cover (MVC), Maximum Independent Set (MaxIS), Maximum Matching (MaxM), and many others, in both the LOCAL and CONGEST distributed computation models. We present lower bounds for the round complexity of solving parameterized problems in both models, together with optimal and near-optimal upper bounds. Our results extend beyond the scope of parameterized problems. We show that any LOCAL (1+epsilon)-approximation algorithm for the above problems must take Omega(epsilon^{-1}) rounds. Joined with the (epsilon^{-1}log n)^{O(1)} rounds algorithm of [Ghaffari et al., 2017] and the Omega (sqrt{(log n)/(log log n)}) lower bound of [Fabian Kuhn et al., 2016], the lower bounds match the upper bound up to polynomial factors in both parameters. We also show that our parameterized approach reduces the runtime of exact and approximate CONGEST algorithms for MVC and MaxM if the optimal solution is small, without knowing its size beforehand. Finally, we propose the first o(n^2) rounds CONGEST algorithms that approximate MVC within a factor strictly smaller than 2

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly
    corecore