36,425 research outputs found

    A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs

    Full text link
    The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued functions on the Boolean cube. In this paper we present a version of this inequality for matrix-valued functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We also present a number of applications. First, we analyze maps that encode nn classical bits into mm qubits, in such a way that each set of kk bits can be recovered with some probability by an appropriate measurement on the quantum encoding; we show that if m<0.7nm<0.7 n, then the success probability is exponentially small in kk. This result may be viewed as a direct product version of Nayak's quantum random access code bound. It in turn implies strong direct product theorems for the one-way quantum communication complexity of Disjointness and other problems. Second, we prove that error-correcting codes that are locally decodable with 2 queries require length exponential in the length of the encoded string. This gives what is arguably the first ``non-quantum'' proof of a result originally derived by Kerenidis and de Wolf using quantum information theory, and answers a question by Trevisan.Comment: This is the full version of a paper that will appear in the proceedings of the IEEE FOCS 08 conferenc
    • …
    corecore