5,677 research outputs found

    2-factors with k cycles in Hamiltonian graphs

    Get PDF
    A well known generalisation of Dirac's theorem states that if a graph GG on n≥4kn\ge 4k vertices has minimum degree at least n/2n/2 then GG contains a 22-factor consisting of exactly kk cycles. This is easily seen to be tight in terms of the bound on the minimum degree. However, if one assumes in addition that GG is Hamiltonian it has been conjectured that the bound on the minimum degree may be relaxed. This was indeed shown to be true by S\'ark\"ozy. In subsequent papers, the minimum degree bound has been improved, most recently to (2/5+ε)n(2/5+\varepsilon)n by DeBiasio, Ferrara, and Morris. On the other hand no lower bounds close to this are known, and all papers on this topic ask whether the minimum degree needs to be linear. We answer this question, by showing that the required minimum degree for large Hamiltonian graphs to have a 22-factor consisting of a fixed number of cycles is sublinear in n.n.Comment: 13 pages, 6 picture

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

    Get PDF
    For even kk, the matchings connectivity matrix Mk\mathbf{M}_k encodes which pairs of perfect matchings on kk vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk\mathbf{M}_k over Z2\mathbb{Z}_2 is Θ(2k)\Theta(\sqrt 2^k) and used this to give an O∗((2+2)pw)O^*((2+\sqrt{2})^{\mathsf{pw}}) time algorithm for counting Hamiltonian cycles modulo 22 on graphs of pathwidth pw\mathsf{pw}. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within Mk\mathbf{M}_k, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of Mk\mathbf{M}_k is given; no stronger structural insights such as the existence of large permutation submatrices in Mk\mathbf{M}_k are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes pp) parameterized by pathwidth. To apply this technique, we prove that the rank of Mk\mathbf{M}_k over the rationals is 4k/poly(k)4^k / \mathrm{poly}(k). We also show that the rank of Mk\mathbf{M}_k over Zp\mathbb{Z}_p is Ω(1.97k)\Omega(1.97^k) for any prime p≠2p\neq 2 and even Ω(2.15k)\Omega(2.15^k) for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time O∗((6−ϵ)pw)O^*((6-\epsilon)^{\mathsf{pw}}) for any ϵ>0\epsilon>0 unless SETH fails. This bound is tight due to a O∗(6pw)O^*(6^{\mathsf{pw}}) time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes p≠2p\neq 2 in time O∗(3.97pw)O^*(3.97^\mathsf{pw}), indicating that the modulus can affect the complexity in intricate ways.Comment: improved lower bounds modulo primes, improved figures, to appear in SODA 201
    • …
    corecore