303 research outputs found

    Revisit of Spectral Bundle Methods: Primal-dual (Sub)linear Convergence Rates

    Full text link
    The spectral bundle method proposed by Helmberg and Rendl is well established for solving large-scale semidefinite programs (SDP) thanks to its low per iteration computational complexity and strong practical performance. In this paper, we revisit this classic method show-ing it achieves sublinear convergence rates in terms of both primal and dual SDPs under merely strong duality, complementing previous guarantees on primal-dual convergence. Moreover, we show the method speeds up to linear convergence if (1) structurally, the SDP admits strict complementarity, and (2) algorithmically, the bundle method captures the rank of the optimal solutions. Such complementary and low rank structure is prevalent in many modern and classical applications. The linear convergent result is established via an eigenvalue approximation lemma which might be of independent interests. Numerically, we confirm our theoretical findings that the spectral bundle method, for modern and classical applications, indeed speeds up under aforementioned conditionComment: 30 pages and 2 figure

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure

    A New Preconditioning Approachfor an Interior Point–Proximal Method of Multipliers for Linear and Convex Quadratic Programming

    Get PDF
    In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a sequence of increasingly ill-conditioned linear systems which cannot always be solved by factorization methods, due to memory and CPU time restrictions. We propose a novel preconditioning strategy which is based on a suitable sparsification of the normal equations matrix in the linear case, and also constitutes the foundation of a block-diagonal preconditioner to accelerate MINRES for linear systems arising from the solution of general quadratic programming problems. Numerical results for a range of test problems demonstrate the robustness of the proposed preconditioning strategy, together with its ability to solve linear systems of very large dimension
    corecore