126 research outputs found

    Adaptation and parameters studies of CS algorithm for flow shop scheduling problem

    Get PDF
    Scheduling concerns the allocation of limited resources overtime to perform tasks to fulfill certain criterion and optimize one or several objective functions. One of the most popular models in scheduling theory is that of the flow-shop scheduling. During the last 40 years, the permutation flow-shop sequencing problem with the objective of makespan minimization has held the attraction of many researchers. This problem characterized as Fm/prmu/Cmax in the notation of Graham, involves the determination of the order of processing of n jobs on m machines. In addition, there was evidence that m-machine permutation flow-shop scheduling problem (PFSP) is strongly NP-hard for m ≥3. Due to this NP-hardness, many heuristic approaches have been proposed, this work falls within the framework of the scientific research, whose purpose is to study Cuckoo search algorithm. Also, the objective of this study is to adapt the cuckoo algorithm to a generalized permutation flow-shop problem for minimizing the total completion time, so the problem is denoted as follow: Fm | | Cmax. Simulation results are judged by the total completion time and algorithm run time for each instance processed

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Comparison of new metaheuristics, for the solution of an integrated jobs-maintenance scheduling problem

    Get PDF
    This paper presents and compares new metaheuristics to solve an integrated jobs-maintenance scheduling problem, on a single machine subjected to aging and failures. The problem, introduced by Zammori et al. (2014), was originally solved using the Modified Harmony Search (MHS) metaheuristic. However, an extensive numerical analysis brought to light some structural limits of the MHS, as the analysis revealed that the MHS is outperformed by the simpler Simulated Annealing by Ishibuchi et al. (1995). Aiming to solve the problem in a more effective way, we integrated the MHS with local minima escaping procedures and we also developed a new Cuckoo Search metaheuristic, based on an innovative Levy Flight. A thorough comparison confirmed the superiority of the newly developed Cuckoo Search, which is capable to find better solutions in a smaller amount of time. This an important result, both for academics and practitioners, since the integrated job-maintenance scheduling problem has a high operational relevance, but it is known to be extremely hard to be solved, especially in a reasonable amount of time. Also, the developed Cuckoo Search has been designed in an extremely flexible way and it can be easily readapted and applied to a wide range of combinatorial problems. (C) 2018 Elsevier Ltd. All rights reserved

    Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

    Get PDF
    In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems

    A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation

    Get PDF
    [EN] The permutation flowshop problem is a classic machine scheduling problem where n jobs must be processed on a set of m machines disposed in series and where each job must visit all machines in the same order. Many production scheduling problems resemble flowshops and hence it has generated much interest and had a big impact in the field, resulting in literally hundreds of heuristic and metaheuristic methods over the last 60 years. However, most methods proposed for makespan minimisation are not properly compared with existing procedures so currently it is not possible to know which are the most efficient methods for the problem regarding the quality of the solutions obtained and the computational effort required. In this paper, we identify and exhaustively compare the best existing heuristics and metaheuristics so the state-of-the-art regarding approximate procedures for this relevant problem is established. (C) 2016 Elsevier B.V. All rights reserved.The authors are sincerely grateful to the anonymous referees, who provide very valuable comments on the earlier version of the paper. This research has been funded by the Spanish Ministry of Science and Innovation, under projects "ADDRESS" (DPI2013-44461-P/DPI) and "SCHEYARD" (DPI2015-65895-R) co-financed by FEDER funds.Fernandez-Viagas, V.; Ruiz García, R.; Framinan, J. (2017). A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research. 257(3):707-721. https://doi.org/10.1016/j.ejor.2016.09.055S707721257

    Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems

    Full text link
    [EN] Industrial production scheduling problems are challenges that researchers have been trying to solve for decades. Many practical scheduling problems such as the hybrid flowshop are ATP-hard. As a result, researchers resort to metaheuristics to obtain effective and efficient solutions. The traditional design process of metaheuristics is mainly manual, often metaphor-based, biased by previous experience and prone to producing overly tailored methods that only work well on the tested problems and objectives. In this paper, we use an Automatic Algorithm Design (AAD) methodology to eliminate these limitations. AAD is capable of composing algorithms from components with minimal human intervention. We test the proposed MD for three different optimization objectives in the hybrid flowshop. Comprehensive computational and statistical testing demonstrates that automatically designed algorithms outperform specifically tailored state-of-the-art methods for the tested objectives in most cases.Pedro Alfaro-Fernandez and Ruben Ruiz are partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization" (No. RTI2018-094940-B-I00) financed with FEDER funds and under grants BES-2013-064858 and EEBB-I-15-10089. This work was supported by the COMEX project (P7/36) within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stiitzle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director.Alfaro-Fernandez, P.; Ruiz García, R.; Pagnozzi, F.; Stützle, T. (2020). Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems. European Journal of Operational Research. 282(3):835-845. https://doi.org/10.1016/j.ejor.2019.10.004S8358452823Bożejko, W., Gnatowski, A., Niżyński, T., Affenzeller, M., & Beham, A. (2018). Local Optima Networks in Solving Algorithm Selection Problem for TSP. Advances in Intelligent Systems and Computing, 83-93. doi:10.1007/978-3-319-91446-6_9Bożejko, W., Pempera, J., & Smutnicki, C. (2013). Parallel tabu search algorithm for the hybrid flow shop problem. Computers & Industrial Engineering, 65(3), 466-474. doi:10.1016/j.cie.2013.04.007Burke, E. K., Hyde, M. R., & Kendall, G. (2012). Grammatical Evolution of Local Search Heuristics. IEEE Transactions on Evolutionary Computation, 16(3), 406-417. doi:10.1109/tevc.2011.2160401Cahon, S., Melab, N., & Talbi, E.-G. (2004). ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), 357-380. doi:10.1023/b:heur.0000026900.92269.ecCarlier, J., & Neron, E. (2000). An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO - Operations Research, 34(1), 1-25. doi:10.1051/ro:2000103Chung, T.-P., & Liao, C.-J. (2013). An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem. Applied Soft Computing, 13(8), 3729-3736. doi:10.1016/j.asoc.2013.03.006Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. doi:10.1016/j.asoc.2015.02.006Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. doi:10.1016/j.cor.2010.10.008Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Computers & Operations Research, 81, 160-166. doi:10.1016/j.cor.2016.12.021Gupta, J. N. D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39(4), 359-364. doi:10.1057/jors.1988.63Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699-711. doi:10.1016/j.ejor.2005.02.001Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. doi:10.1016/j.amc.2011.02.108Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stuetzle, T. (2009). ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36, 267-306. doi:10.1613/jair.2861Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. doi:10.1002/nav.3800010110Khalouli, S., Ghedjati, F., & Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT scheduling problem in hybrid flow shop. Engineering Applications of Artificial Intelligence, 23(5), 765-771. doi:10.1016/j.engappai.2010.01.008KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016). SATenstein: Automatically building local search SAT solvers from components. Artificial Intelligence, 232, 20-42. doi:10.1016/j.artint.2015.11.002Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005Liao, C.-J., Tjandradjaja, E., & Chung, T.-P. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12(6), 1755-1764. doi:10.1016/j.asoc.2012.01.011Lopez-Ibanez, M., & Stutzle, T. (2012). The Automatic Design of Multiobjective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861-875. doi:10.1109/tevc.2011.2182651López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58. doi:10.1016/j.orp.2016.09.002Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305. doi:10.1109/tevc.2013.2240304Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005Marichelvam, M. K., Prabaharan, T., Yang, X. S., & Geetha, M. (2013). Solving hybrid flow shop scheduling problems using bat algorithm. International Journal of Logistics Economics and Globalisation, 5(1), 15. doi:10.1504/ijleg.2013.054428Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014). Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51, 190-199. doi:10.1016/j.cor.2014.05.020Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9Pan, Q.-K., & Dong, Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655. doi:10.1016/j.ins.2014.02.152Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. doi:10.1016/j.cor.2016.11.022Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 45, 42-56. doi:10.1016/j.omega.2013.12.004Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. doi:10.1016/s0377-2217(96)00273-1Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024Sörensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. doi:10.1111/itor.12001Vignier, A., Billaut, J.-C., & Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride : état de l’art. RAIRO - Operations Research, 33(2), 117-183. doi:10.1051/ro:1999108Wang, S., Wang, L., Liu, M., & Xu, Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2043-2056. doi:10.1007/s00170-013-4819-yXu, Y., Wang, L., Wang, S., & Liu, M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430. doi:10.1080/0305215x.2012.73778

    An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm

    Get PDF
    Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm

    A Multi-Objective Variable Neighborhood Search Algorithm for Precast Production Scheduling

    Get PDF
    In real life, precast production schedulers face the challenges of creating a reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and objectives encountered in the precast production scheduling problem (PPSP) were addressed, with the goal to minimize makespan and total earliness and tardiness penalties. A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the performance was tested on 11 problem instances. Ten of these were generated using precast concrete production information taken from the literature. One real industrial problem from a precast concrete company was considered as a case study. Extensive experiments were conducted, and the spread and distance metrics were used to evaluate the quality of the non-dominated solutions set. Statistical analysis demonstrated that the result was statistically convincing. Computational results showed that the proposed MOVNS algorithm was significantly better when compared to the other nine algorithms. Therefore, the proposed MOVNS algorithm was a very competitive method for the considered PPSP

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP
    corecore