5,975 research outputs found

    Synchronization of Chaotic Neural Networks with Leakage Delay and Mixed Time-Varying Delays via Sampled-Data Control

    Get PDF
    This paper investigates the synchronization problem for neural networks with leakage delay and both discrete and distributed time-varying delays under sampled-data control. By employing the Lyapunov functional method and using the matrix inequality techniques, a delay-dependent LMIs criterion is given to ensure that the master systems and the slave systems are synchronous. An example with simulations is given to show the effectiveness of the proposed criterion

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Combined Convex Technique on Delay-Distribution-Dependent Stability for Delayed Neural Networks

    Get PDF
    Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both of delay variation limits can be measured. Through combining the reciprocal convex technique and convex technique one, the criterion is presented via LMIs and its solvability heavily depends on the sizes of both time-delay range and its variations, which can become much less conservative than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four numerical examples that our idea reduces the conservatism more effectively than some earlier reported ones

    Passivity Analysis of Markovian Jumping Neural Networks with Leakage Time-Varying Delays

    Get PDF

    Existence and stability of a periodic solution of a general difference equation with applications to neural networks with a delay in the leakage terms

    Full text link
    In this paper, a new global exponential stability criterion is obtained for a general multidimensional delay difference equation using induction arguments. In the cases that the difference equation is periodic, we prove the existence of a periodic solution by constructing a type of Poincar\'e map. The results are used to obtain stability criteria for a general discrete-time neural network model with a delay in the leakage terms. As particular cases, we obtain new stability criteria for neural network models recently studied in the literature, in particular for low-order and high-order Hopfield and Bidirectional Associative Memory(BAM).Comment: 20 pages, 3 figure

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    STABILITY, FINITE-TIME STABILITY AND PASSIVITY CRITERIA FOR DISCRETE-TIME DELAYED NEURAL NETWORKS

    Get PDF
    In this paper, we present the problem of stability, finite-time stability and passivity for discrete-time neural networks (DNNs) with variable delays. For the purposes of stability analysis, an augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two non-equidistant subintervals. Then, by using the Wirtinger-based inequality, reciprocally and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of LKF are given. In order to relax the existing results, several zero equalities are introduced and stability criteria are proposed in terms of linear matrix inequalities (LMIs). The main objective for the finite-time stability and passivity analysis is how to effectively evaluate the finite-time passivity conditions for DNNs. To achieve this, some weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of LKF, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. Some numerical examples are presented to illustrate the proposed methodology
    corecore