7,135 research outputs found

    Extended Combinatorial Constructions for Peer-to-peer User-Private Information Retrieval

    Get PDF
    We consider user-private information retrieval (UPIR), an interesting alternative to private information retrieval (PIR) introduced by Domingo-Ferrer et al. In UPIR, the database knows which records have been retrieved, but does not know the identity of the query issuer. The goal of UPIR is to disguise user profiles from the database. Domingo-Ferrer et al.\ focus on using a peer-to-peer community to construct a UPIR scheme, which we term P2P UPIR. In this paper, we establish a strengthened model for P2P UPIR and clarify the privacy goals of such schemes using standard terminology from the field of privacy research. In particular, we argue that any solution providing privacy against the database should attempt to minimize any corresponding loss of privacy against other users. We give an analysis of existing schemes, including a new attack by the database. Finally, we introduce and analyze two new protocols. Whereas previous work focuses on a special type of combinatorial design known as a configuration, our protocols make use of more general designs. This allows for flexibility in protocol set-up, allowing for a choice between having a dynamic scheme (in which users are permitted to enter and leave the system), or providing increased privacy against other users.Comment: Updated version, which reflects reviewer comments and includes expanded explanations throughout. Paper is accepted for publication by Advances in Mathematics of Communication

    MPKMS: a Matrix-based Pairwise Key Management Scheme for Wireless Sensor Networks

    Full text link
    Due to the sensitivity of the Wireless Sensor Networks (WSN) applications and resource constraints, authentication and key management emerge as a challenging issue for WSN. In general, various approaches have been developed for the key management in WSN. This paper has come up with a new robust key pre-distribution scheme using random polynomial functions and matrix. This new proposed scheme significantly increases the storage efficiency and provides resilience to network against node capture by using random prime numbers, polynomial functions and matrix properties. The effectiveness of the scheme is demonstrated through a security analysis and comparison with the existing schemes

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    MPKMS: A Matrix-based Pairwise Key Management Scheme for Wireless Sensor Networks

    Get PDF
    Due to the sensitivity of the Wireless Sensor Networks (WSN) applications and resource constraints, authentication and key management emerge as a challenging issue for WSN. In general, various approaches have been developed for the key management in WSN. This paper has come up with a new robust key pre-distribution scheme using random polynomial functions and matrix. This new proposed scheme significantly increases the storage efficiency and provides resilience to network against node capture by using random prime numbers, polynomial functions and matrix properties. The effectiveness of the scheme is demonstrated through a security analysis and comparison with the existing schemes

    Deterministic Merging of Blocks in Combinatorial Design based Key Predistribution in Distributed Wireless Sensor Network

    Get PDF
    Sensor nodes have severe constraints in terms of its resources such as processing power, memory, communication range, battery power. Due to wireless nature of communication between nodes in a wireless sensor network, any attacker can intercept the communicating messages between sensor nodes. So the need for securing these messages is obvious. Due to resource constraints of sensor nodes, public key cryptography can’t be employed for securing the communication as public key cryptography demands much computational effort. So, private key cryptography is natural choice for securing the communication in wireless sensor network. Key predistribution has become obvious choice for distributing keys in sensor nodes for secured communication in a wireless sensor network. A pool of keys is first taken, and then a set of keys from this key pool is installed in every sensor node before their deployment. The keys predistributed to a particular sensor node can be drawn from the key pool probabilistically or deterministically. Combinatorial design which was originated as a branch of statistics and later found its vast application in coding theory and of late in cryptography plays a vital role in deterministic key predistribution. The connectivity and resiliency offered by some combinatorial design based key predistribution schemes can be sometimes offered by merging of blocks and then assign these merged blocks to sensor nodes. The question is how to choose blocks for merging? There is a prior general work on merging of blocks which has been studied on transversal design based key predistribution scheme. This approach is not deterministic, but heuristic. A deterministic algorithm for merging of blocks has been proposed. The orthogonal array based key predistribution scheme has been studied in detail and the non suitability of merging approach to improve its performance has been shown. In addition, a key establishment algorithm for transversal design based key predistribution scheme has been proposed

    INSENS: Intrusion-tolerant routing for wireless sensor networks

    Get PDF
    This paper describes an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS). INSENS securely and efficiently constructs tree-structured routing for wireless sensor networks (WSNs). The key objective of an INSENS network is to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets. To limit or localize the damage caused by such an intruder, INSENS incorporates distributed lightweight security mechanisms, including efficient one-way hash chains and nested keyed message authentication codes that defend against wormhole attacks, as well as multipath routing. Adapting to WSN characteristics, the design of INSENS also pushes complexity away from resource-poor sensor nodes towards resource-rich base stations. An enhanced single-phase version of INSENS scales to large networks, integrates bidirectional verification to defend against rushing attacks, accommodates multipath routing to multiple base stations, enables secure joining/leaving, and incorporates a novel pairwise key setup scheme based on transitory global keys that is more resilient than LEAP. Simulation results are presented to demonstrate and assess the tolerance of INSENS to various attacks launched by an adversary. A prototype implementation of INSENS over a network of MICA2 motes is presented to evaluate the cost incurred

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities
    corecore