100 research outputs found

    Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security

    Get PDF
    We present information-theoretic definitions and results for analyzing symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained. We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-distortion theory. We start by presenting a new information-theoretic metric for security, called symbol secrecy, and derive associated fundamental bounds. We then introduce list-source codes (LSCs), which are a general framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve in order to recover a secret message. We provide explicit constructions of LSCs, and demonstrate that, when the source is uniformly distributed, the highest level of symbol secrecy for a fixed key length can be achieved through a construction based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion theory, we then show how symbol secrecy can be used to determine the probability that an eavesdropper correctly reconstructs functions of the original plaintext. We illustrate how these bounds can be applied to characterize security properties of symmetric-key encryption schemes, and, in particular, extend security claims based on symbol secrecy to a functional setting.Comment: Submitted to IEEE Transactions on Information Theor

    Sparse Multi-Decoder Recursive Projection Aggregation for Reed-Muller Codes

    Full text link
    Reed-Muller (RM) codes are one of the oldest families of codes. Recently, a recursive projection aggregation (RPA) decoder has been proposed, which achieves a performance that is close to the maximum likelihood decoder for short-length RM codes. One of its main drawbacks, however, is the large amount of computations needed. In this paper, we devise a new algorithm to lower the computational budget while keeping a performance close to that of the RPA decoder. The proposed approach consists of multiple sparse RPAs that are generated by performing only a selection of projections in each sparsified decoder. In the end, a cyclic redundancy check (CRC) is used to decide between output codewords. Simulation results show that our proposed approach reduces the RPA decoder's computations up to 80%80\% with negligible performance loss.Comment: 6 pages, 12 figure

    A Study on the Impact of Locality in the Decoding of Binary Cyclic Codes

    Full text link
    In this paper, we study the impact of locality on the decoding of binary cyclic codes under two approaches, namely ordered statistics decoding (OSD) and trellis decoding. Given a binary cyclic code having locality or availability, we suitably modify the OSD to obtain gains in terms of the Signal-To-Noise ratio, for a given reliability and essentially the same level of decoder complexity. With regard to trellis decoding, we show that careful introduction of locality results in the creation of cyclic subcodes having lower maximum state complexity. We also present a simple upper-bounding technique on the state complexity profile, based on the zeros of the code. Finally, it is shown how the decoding speed can be significantly increased in the presence of locality, in the moderate-to-high SNR regime, by making use of a quick-look decoder that often returns the ML codeword.Comment: Extended version of a paper submitted to ISIT 201

    새로운 소실 채널을 위한 자기동형 군 복호기 및 부분 접속 복구 부호 및 일반화된 근 프로토그래프 LDPC 부호의 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2019. 2. 노종선.In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.이 논문에서는, i) 소실 채널에서 순환 부호의 새로운 이단 자기동형 군 복호기 , ii) 분산 저장 시스템을 위한 순환 부호 및 기존의 부분 접속 복구 부호(LRC)를 이용한 이진 혹은 삼진 부분 접속 복구 부호 설계법, 및 iii) 블록 간섭 환경을 위한 고부효율의 일반화된 근 프로토그래프(generalized root protograph, GRP) LDPC 부호 및 추적 재밍 환경을 위한 항재밍 부분 균일 (anti-jamming paritally regular, AJ-PR) LDPC 부호가 연구되었다. 첫번째로, 소실 채널에서 순환 부호의 새로운 이단 자기동형 군 복호기를 제안하였다. 최근 분산 저장 시스템 혹은 무선 센서 네트워크 등의 응용으로 인해 소실 채널에서의 오류 정정 부호 기법이 주목받고 있다. 그러나 많은 복호기 알고리즘은 높은 복호 복잡도 및 긴 지연으로 인해 실용적이지 못하다. 따라서 낮은 복호 복잡도 및 높은 성능을 보일 수 있는 순환 부호에서 이단 자기 동형 군 복호기가 제안되었다. 본 연구에서는 패리티 검사 행렬을 변형하고, 전처리 과정을 도입한 새로운 이단 자기동형 군 복호기를 제안한다. 제안한 복호기는 perfect 부호, BCH 부호 및 최대 거리 분리 (maximum distance separable, MDS) 부호에 대해서 분석되었다. 수치 분석을 통해, 제안된 복호 알고리즘은 기존의 자기 동형 군 복호기보다 낮은 복잡도를 보이며, 몇몇의 순환 부호 및 소실 채널에서 최대 우도 (maximal likelihood, ML)과 같은 수준의 성능임을 보인다. MDS 부호의 경우, 확장된 패리티검사 행렬 및 작은 크기의 행렬의 역연산을 활용하였을 경우의 성능을 분석한다. 두 번째로, 분산 저장 시스템을 위한 순환 부호 및 기존의 부분 접속 복구 부호 (LRC)를 이용한 이진 혹은 삼진 부분 접속 복구 부호 설계법을 제안하였다. 초기 연구로서, 순환 부호 및 연접을 활용한 이진 및 삼진 LRC 설계 기법이 연구되었다. 최소 해밍 거리가 4,5, 혹은 6인 제안된 이진 LRC 중 일부는 상한과 비교해 보았을 때 최적 설계임을 증명하였다. 또한, 비슷한 방법을 적용하여 좋은 파라미터의 삼진 LRC를 설계할 수 있었다. 그 외에 기존의 LRC를 활용하여 큰 해밍 거리의 새로운 LRC를 설계하는 방법을 제안하였다. 제안된 LRC는 분리된 복구 군 조건에서 최적이거나 최적에 가까운 값을 보였다. 마지막으로, GRP LDPC 부호는 Nakagami-mm 블록 페이딩 및 블록 간섭이 있는 두 상태의 이진 대칭 채널을 기반으로 한다. 이러한 채널 환경에서 GRP LDPC 부호는 하나의 블록 간섭이 발생했을 경우, 이론적 성능에 가까운 좋은 성능을 보여준다. 이러한 이론 값은 채널 문턱값이나 채널 outage 확률을 통해 검증할 수 있다. 제안된 설계에서는, 변형된 PEXIT 알고리즘을 활용하여 기초 행렬을 설계한다. 또한 AJ-PR LDPC 부호는 주파수 도약 환경에서 발생하는 추적 재밍이 있는 환경을 기반으로 한다. 채널 환경으로 MFSK 변복조 방식의 레일리 블록 페이딩 및 무작위한 지속 시간이 있는 재밍 환경을 가정한다. 이러한 재밍 환경으로 최적화하기 위해, 부분 균일 구조 및 해당되는 밀도 진화 (density evolution, DE) 기법이 활용된다. 여러 시뮬레이션 결과는 추적 재밍이 존재하는 환경에서 제안된 부호가 802.16e에 사용되었던 LDPC 부호보다 성능이 우수함을 보여준다.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d ≥ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto

    Successive Cancellation Ordered Search Decoding of Modified GN\boldsymbol{G}_N-Coset Codes

    Full text link
    A tree search algorithm called successive cancellation ordered search (SCOS) is proposed for GN\boldsymbol{G}_N-coset codes that implements maximum-likelihood (ML) decoding with an adaptive complexity for transmission over binary-input AWGN channels. Unlike bit-flip decoders, no outer code is needed to terminate decoding; therefore, SCOS also applies to GN\boldsymbol{G}_N-coset codes modified with dynamic frozen bits. The average complexity is close to that of successive cancellation (SC) decoding at practical frame error rates (FERs) for codes with wide ranges of rate and lengths up to 512512 bits, which perform within 0.250.25 dB or less from the random coding union bound and outperform Reed--Muller codes under ML decoding by up to 0.50.5 dB. Simulations illustrate simultaneous gains for SCOS over SC-Fano, SC stack (SCS) and SC list (SCL) decoding in FER and the average complexity at various SNR regimes. SCOS is further extended by forcing it to look for candidates satisfying a threshold on the likelihood, thereby outperforming basic SCOS under complexity constraints. The modified SCOS enables strong error-detection capability without the need for an outer code. In particular, the (128,64)(128, 64) PAC code under modified SCOS provides gains in overall and undetected FER compared to CRC-aided polar codes under SCL/dynamic SC flip decoding at high SNR.Comment: 14 pages, 9 figures, 3 tables. Submitted to IEEE journal. The revised version of the first submission. Major changes: 1) No dedicated section for numerical results. Instead, simulations are provided right after the relevant section. 2) More simulation results are added to compare all the state of art polar decoders in terms of the number of arithmetic operations. arXiv admin note: text overlap with arXiv:2105.0404

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases
    corecore