434 research outputs found

    Processing of Multichannel Remote-Sensing Images with Prediction of Performance Parameters

    Get PDF
    In processing of multichannel remote sensing data, there is a need in automation of basic operations as filtering and compression. Automation presumes undertaking a decision on expedience of image filtering. Automation also deals with obtaining of information based on which certain decisions can be undertaken or parameters of processing algorithms can be chosen. For the considered operations of denoising and lossy compression, it is shown that their basic performance characteristics can be quite easily predicted based on easily calculated local statistics in discrete cosine transform (DCT) domain. The described methodology of prediction is shown to be general and applicable to different types of noise under condition that its basic characteristics are known in advance or pre-estimated accurately

    Lossy Compression of Remote Sensing Images with Controllable Distortions

    Get PDF
    In this chapter, approaches to provide a desired quality of remote sensing images compressed in a lossy manner are considered. It is shown that, under certain conditions, this can be done automatically and quickly using prediction of coder performance parameters. The main parameters (metrics) are mean square error (MSE) or peak signal-to-noise ratio (PSNR) of introduced losses (distortions) although prediction of other important metrics is also possible. Having such a prediction, it becomes possible to set a quantization step of a coder in a proper manner to provide distortions of a desired level or less without compression/decompression iterations for single-channel image. It is shown that this approach can be also exploited in three-dimensional (3D) compression of multichannel images to produce a larger compression ratio (CR) for the same or less introduced distortions as for component-wise compression of multichannel data. The proposed methods are verified for test and real life images

    Automatic Adaptive Lossy Compression of Multichannel Remote Sensing Images

    Get PDF
    In this chapter, we consider lossy compression of multichannel images acquired by remote sensing systems. Two main features of such data are taken into account. First, images contain inherent noise that can be of different intensity and type. Second, there can be essential correlation between component images. These features can be exploited in 3D compression that is demonstrated to be more efficient than component-wise compression. The benefits are in considerably higher compression ratio attained for the same or even less distortions introduced. It is shown that important performance parameters of lossy compression can be rather easily and accurately predicted

    Compression of Spectral Images

    Get PDF

    1994 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    Investigation of the effects of image compression on the geometric quality of digital protogrammetric imagery

    Get PDF
    We are living in a decade, where the use of digital images is becoming increasingly important. Photographs are now converted into digital form, and direct acquisition of digital images is becoming increasing important as sensors and associated electronics. Unlike images in analogue form, digital representation of images allows visual information to· be easily manipulated in useful ways. One practical problem of the digital image representation is that, it requires a very large number of bits and hence one encounters a fairly large volume of data in a digital production environment if they are stored uncompressed on the disk. With the rapid advances in sensor technology and digital electronics, the number of bits grow larger in softcopy photogrammetry, remote sensing and multimedia GIS. As a result, it is desirable to find efficient representation for digital images in order to reduce the memory required for storage, improve the data access rate from storage devices, and reduce the time required for transfer across communication channels. The component of digital image processing that deals with this problem is called image compression. Image compression is a necessity for the utilisation of large digital images in softcopy photogrammetry, remote sensing, and multimedia GIS. Numerous image Compression standards exist today with the common goal of reducing the number of bits needed to store images, and to facilitate the interchange of compressed image data between various devices and applications. JPEG image compression standard is one alternative for carrying out the image compression task. This standard was formed under the auspices ISO and CCITT for the purpose of developing an international standard for the compression and decompression of continuous-tone, still-frame, monochrome and colour images. The JPEG standard algorithm &Us into three general categories: the baseline sequential process that provides a simple and efficient algorithm for most image coding applications, the extended DCT-based process that allows the baseline system to satisfy a broader range of applications, and an independent lossless process for application demanding that type of compression. This thesis experimentally investigates the geometric degradations resulting from lossy JPEG compression on photogrammetric imagery at various levels of quality factors. The effects and the suitability of JPEG lossy image compression on industrial photogrammetric imagery are investigated. Examples are drawn from the extraction of targets in close-range photogrammetric imagery. In the experiments, the JPEG was used to compress and decompress a set of test images. The algorithm has been tested on digital images containing various levels of entropy (a measure of information content of an image) with different image capture capabilities. Residual data was obtained by taking the pixel-by-pixel difference between the original data and the reconstructed data. The image quality measure, root mean square (rms) error of the residual was used as a quality measure to judge the quality of images produced by JPEG(DCT-based) image compression technique. Two techniques, TIFF (IZW) compression and JPEG(DCT-based) compression are compared with respect to compression ratios achieved. JPEG(DCT-based) yields better compression ratios, and it seems to be a good choice for image compression. Further in the investigation, it is found out that, for grey-scale images, the best compression ratios were obtained when the quality factors between 60 and 90 were used (i.e., at a compression ratio of 1:10 to 1:20). At these quality factors the reconstructed data has virtually no degradation in the visual and geometric quality for the application at hand. Recently, many fast and efficient image file formats have also been developed to store, organise and display images in an efficient way. Almost every image file format incorporates some kind of compression method to manage data within common place networks and storage devices. The current major file formats used in softcopy photogrammetry, remote sensing and · multimedia GIS. were also investigated. It was also found out that the choice of a particular image file format for a given application generally involves several interdependent considerations including quality; flexibility; computation; storage, or transmission. The suitability of a file format for a given purpose is · best determined by knowing its original purpose. Some of these are widely used (e.g., TIFF, JPEG) and serve as exchange formats. Others are adapted to the needs of particular applications or particular operating systems

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201
    • …
    corecore