71 research outputs found

    The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives.

    Get PDF
    Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer deaths in both sexes combined. Recent years have seen major advances in the diagnostic and treatment options for patients with non-small-cell lung cancer (NSCLC), including the routine use of 2-deoxy-2[18F]-fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in staging and response evaluation, minimally invasive endoscopic biopsy, targeted radiotherapy, minimally invasive surgery, and molecular and immunotherapies. In this review, the central roles of CT and 18F-FDG PET/CT in staging and response in both NSCLC and malignant pleural mesothelioma (MPM) are critically assessed. The Tumour Node Metastases (TNM-8) staging systems for NSCLC and MPM are presented with critical appraisal of the strengths and pitfalls of imaging. Overviews of the Response Evaluation Criteria in Solid Tumours (RECIST 1.1) for NSCLC and the modified RECIST criteria for MPM are provided, together with discussion of the benefits and limitations of these anatomical-based tools. Metabolic response assessment (not evaluated by RECIST 1.1) will be explored. We introduce the Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST 1.0) to include its advantages and challenges. The limitations of both anatomical and metabolic assessment criteria when applied to NSCLC treated with immunotherapy and the important concept of pseudoprogression are addressed with reference to immune RECIST (iRECIST). Separate consideration is given to the diagnosis and follow up of solitary pulmonary nodules with reference to the British Thoracic Society guidelines and Fleischner guidelines and use of the Brock (CT-based) and Herder (addition of 18F-FDG PET/CT) models for assessing malignant potential. We discuss how these models inform decisions by the multidisciplinary team, including referral of suspicious nodules for non-surgical management in patients unsuitable for surgery. We briefly outline current lung screening systems being used in the UK, Europe and North America. Emerging roles for MRI in lung cancer imaging are reviewed. The use of whole-body MRI in diagnosing and staging NSCLC is discussed with reference to the recent multicentre Streamline L trial. The potential use of diffusion-weighted MRI to distinguish tumour from radiotherapy-induced lung toxicity is discussed. We briefly summarise the new PET-CT radiotracers being developed to evaluate specific aspects of cancer biology, other than glucose uptake. Finally, we describe how CT, MRI and 18F-FDG PET/CT are moving from primarily diagnostic tools for lung cancer towards having utility in prognostication and personalised medicine with the agency of artificial intelligence

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    A random forest for lung nodule identification

    Full text link
    A method is presented for identification of lung nodules. It includes three stages: image acquisition, background removal, and nodule detection. The first stage improves image quality. The second stage extracts long lobe regions. The third stage detects lung nodules. The method is based on the random forest learner. Training set contains nodule, non-nodule, and false-positive patterns. Test set contains randomly selected images. The developed method is compared against the support vector machine. True-positives of 100% and 85.9%, and false-positives of 1.27 and 1.33 per image were achieved by the developed method and the support vector machine, respectively.<br /

    Automated identification of lung nodules

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.A system that can automatically detect nodules within lung images may assist expert radiologists in interpreting the abnormal patterns as nodules in 2D CT lung images. A system is presented that can automatically identify nodules of various sizes within lung images. The pattern classification method is employed to develop the proposed system. A random forest ensemble classifier is formed consisting of many weak learners that can grow decision trees. The forest selects the decision that has the most votes. The developed system consists of two random forest classifiers connected in a series fashion. A subset of CT lung images from the LIDC database is employed. It consists of 5721 images to train and test the system. There are 411 images that contained expert- radiologists identified nodules. Training sets consisting of nodule, non-nodule, and false-detection patterns are constructed. A collection of test images are also built. The first classifier is developed to detect all nodules. The second classifier is developed to eliminate the false detections produced by the first classifier. According to the experimental results, a true positive rate of 100%, and false positive rate of 1.4 per lung image are achieved.S. L. A. Lee, A. Z. Kouzani, and E. J. H

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Lung cancer screening: clinical implications

    Get PDF

    Lung cancer screening: clinical implications

    Get PDF

    Computed tomography reading strategies in lung cancer screening

    Get PDF

    Probability of cancer in lung nodules using sequential volumetric screening up to 12 months: the UKLS trial.

    Get PDF
    BACKGROUND: Estimation of the clinical probability of malignancy in patients with pulmonary nodules will facilitate early diagnosis, determine optimum patient management strategies and reduce overall costs. METHODS: Data from the UK Lung Cancer Screening trial were analysed. Multivariable logistic regression models were used to identify independent predictors and to develop a parsimonious model to estimate the probability of lung cancer in lung nodules detected at baseline and at 3-month and 12-month repeat screening. RESULTS: Of 1994 participants who underwent CT scan, 1013 participants had a total of 5063 lung nodules and 52 (2.6%) of the participants developed lung cancer during a median follow-up of 4 years. Covariates that predict lung cancer in our model included female gender, asthma, bronchitis, asbestos exposure, history of cancer, early and late onset of family history of lung cancer, smoking duration, FVC, nodule type (pure ground-glass and part-solid) and volume as measured by semiautomated volumetry. The final model incorporating all predictors had excellent discrimination: area under the receiver operating characteristic curve (AUC 0.885, 95% CI 0.880 to 0.889). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected AUC 0.882, 95% CI 0.848 to 0.907). The risk model had a good calibration (goodness-of-fit χ[8] 8.13, p=0.42). CONCLUSIONS: Our model may be used in estimating the probability of lung cancer in nodules detected at baseline and at 3 months and 12 months from baseline, allowing more efficient stratification of follow-up in population-based lung cancer screening programmes. TRIAL REGISTRATION NUMBER: 78513845.National Institute for Health Research Health Technology Assessment (NIHR HTA) (reference number HTA 09/61/01)
    • …
    corecore