5,180 research outputs found

    Top-down effects on early visual processing in humans: a predictive coding framework

    Get PDF
    An increasing number of human electroencephalography (EEG) studies examining the earliest component of the visual evoked potential, the so-called C1, have cast doubts on the previously prevalent notion that this component is impermeable to top-down effects. This article reviews the original studies that (i) described the C1, (ii) linked it to primary visual cortex (V1) activity, and (iii) suggested that its electrophysiological characteristics are exclusively determined by low-level stimulus attributes, particularly the spatial position of the stimulus within the visual field. We then describe conflicting evidence from animal studies and human neuroimaging experiments and provide an overview of recent EEG and magnetoencephalography (MEG) work showing that initial V1 activity in humans may be strongly modulated by higher-level cognitive factors. Finally, we formulate a theoretical framework for understanding top-down effects on early visual processing in terms of predictive coding

    A dual role for prediction error in associative learning

    Get PDF
    Confronted with a rich sensory environment, the brain must learn statistical regularities across sensory domains to construct causal models of the world. Here, we used functional magnetic resonance imaging and dynamic causal modeling (DCM) to furnish neurophysiological evidence that statistical associations are learnt, even when task-irrelevant. Subjects performed an audio-visual target-detection task while being exposed to distractor stimuli. Unknown to them, auditory distractors predicted the presence or absence of subsequent visual distractors. We modeled incidental learning of these associations using a Rescorla--Wagner (RW) model. Activity in primary visual cortex and putamen reflected learning-dependent surprise: these areas responded progressively more to unpredicted, and progressively less to predicted visual stimuli. Critically, this prediction-error response was observed even when the absence of a visual stimulus was surprising. We investigated the underlying mechanism by embedding the RW model into a DCM to show that auditory to visual connectivity changed significantly over time as a function of prediction error. Thus, consistent with predictive coding models of perception, associative learning is mediated by prediction-error dependent changes in connectivity. These results posit a dual role for prediction-error in encoding surprise and driving associative plasticity

    Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction

    Get PDF
    Even though the eyes constantly change position, the location of a stimulus can be accurately represented by a population of neurons with retinotopic receptive fields modulated by eye position gain fields. Recent electrophysiological studies, however, indicate that eye position gain fields may serve an additional function since they have a non-uniform spatial distribution that increases the neural response to stimuli in the straight-ahead direction. We used functional magnetic resonance imaging and a wide-field stimulus display to determine whether gaze modulations in early human visual cortex enhance the blood-oxygenation-level dependent (BOLD) response to stimuli that are straight-ahead. Subjects viewed rotating polar angle wedge stimuli centered straight-ahead or vertically displaced by ±20° eccentricity. Gaze position did not affect the topography of polar phase-angle maps, confirming that coding was retinotopic, but did affect the amplitude of the BOLD response, consistent with a gain field. In agreement with recent electrophysiological studies, BOLD responses in V1 and V2 to a wedge stimulus at a fixed retinal locus decreased when the wedge location in head-centered coordinates was farther from the straight-ahead direction. We conclude that stimulus-evoked BOLD signals are modulated by a systematic, non-uniform distribution of eye-position gain fields

    Test-retest reliability of evoked heat stimulation bold functional magnetic resonance imaging

    Full text link
    To date, the blood oxygenated-level dependent (BOLD) functional magnetic resonance imaging (fMRI) technique has enabled an objective and deeper understanding of pain processing mechanisms embedded within the human central nervous system (CNS). In order to further comprehend the benefits and limitations of BOLD fMRI in the context of pain as well as the corresponding subjective pain ratings, we evaluated the univariate response, test-retest reliability and confidence intervals (CIs) at the 95% level of both data types collected during evoked stimulation of 40°C (non-noxious), 44°C (mildly noxious) and a subject-specific temperature eliciting a 7/10 pain rating. The test-retest reliability between two scanning sessions was determined by calculating group-level interclass correlation coefficients and at the single-subject level. Across the three stimuli, we initially observed a graded response of increasing magnitude for both visual analogue scale (VAS) pain ratings and fMRI data. Test-retest reliability was observed to be highest for VAS pain ratings obtained during the 7/10 pain stimulation (intraclass correlation coefficient (ICC) = 0.938), while ICC values of pain fMRI data for a distribution of CNS structures ranged from 0.5 to 0.859 (p < 0.05). Importantly, the upper and lower CI bounds reported herein could be utilized in subsequent trials involving healthy volunteers to hypothesize the magnitude of effect required to overcome inherent variability of either VAS pain ratings or BOLD responses evoked during innocuous or noxious thermal stimulation

    Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation

    Get PDF
    Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback
    corecore