64 research outputs found

    A Novel Data-Aided Channel Estimation with Reduced Complexity for TDS-OFDM Systems

    Get PDF
    In contrast to the classical cyclic prefix (CP)-OFDM, the time domain synchronous (TDS)-OFDM employs a known pseudo noise (PN) sequence as guard interval (GI). Conventional channel estimation methods for TDS-OFDM are based on the exploitation of the PN sequence and consequently suffer from intersymbol interference (ISI). This paper proposes a novel dataaided channel estimation method which combines the channel estimates obtained from the PN sequence and, most importantly, additional channel estimates extracted from OFDM data symbols. Data-aided channel estimation is carried out using the rebuilt OFDM data symbols as virtual training sequences. In contrast to the classical turbo channel estimation, interleaving and decoding functions are not included in the feedback loop when rebuilding OFDM data symbols thereby reducing the complexity. Several improved techniques are proposed to refine the data-aided channel estimates, namely one-dimensional (1-D)/two-dimensional (2-D) moving average and Wiener filtering. Finally, the MMSE criteria is used to obtain the best combination results and an iterative process is proposed to progressively refine the estimation. Both MSE and BER simulations using specifications of the DTMB system are carried out to prove the effectiveness of the proposed algorithm even in very harsh channel conditions such as in the single frequency network (SFN) case

    Analysis and Performance Comparison of DVB-T and DTMB Systems for Terrestrial Digital TV

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is the most popular transmission technology in digital terrestrial broadcasting (DTTB), adopted by many DTTB standards. In this paper, the bit error rate (BER) performance of two DTTB systems, namely cyclic prefix OFDM (CP-OFDM) based DVB-T and time domain synchronous OFDM (TDS-OFDM) based DTMB, is evaluated in different channel conditions. Spectrum utilization and power efficiency are also discussed to demonstrate the transmission overhead of both systems. Simulation results show that the performances of the two systems are much close. Given the same ratio of guard interval (GI), the DVB-T outperforms DTMB in terms of signal to noise ratio (SNR) in Gaussian and Ricean channels, while DTMB behaves better performance in Rayleigh channel in higher code rates and higher orders of constellation thanks to its efficient channel coding and interleaving scheme

    A novel uplink multiple access scheme based on TDS-FDMA

    No full text
    This contribution proposes a novel time-domain synchronous frequency division multiple access (TDS-FDMA) scheme to support multi-user uplink application. A unified frame structure for both single-carrier and multi-carrier transmissions and the corresponding low-complexity receiver design are derived. Compared with standard cyclic prefix based orthogonal frequency division multiple access systems, the proposed TDSFDMA scheme improves the spectral efficiency by about 5% to 10% as well as imposes a similarly low computational complexity, while obtaining a slightly better bit error rate performance over Rayleigh fading channels

    A Combined Time and Frequency Algorithm for Improved Channel Estimation in TDS-OFDM

    Get PDF
    ISBN: 978-1-4244-6404-3 - WOSInternational audienceIn contrast to the classical cyclic prefix (CP)-OFDM, the time domain synchronous (TDS)-OFDM employs a known pseudo noise (PN) sequence as guard interval (GI). Conventional channel estimation methods for TDS-OFDM are only based on the PN sequence and consequently suffer from intersymbol interference. This paper proposes a novel two-stage channel estimation method which combines the estimation results from the PN sequence and, most importantly, the estimation results obtained from the OFDM data symbols. A simple feedback loop that excludes the channel decoder is employed for the OFDM data based estimation. The MMSE criteria is used to obtain the best combination results and an iterative process is proposed to progressively refine the estimation. Both MSE and BER simulations are carried out to prove the effectiveness of the proposed algorithm in the DTMB system which is based on TDS-OFDM signalling

    Enhanced Two-Dimensional Data-aided Channel Estimation for TDS-OFDM

    Get PDF
    International audienceIn time domain synchronous (TDS)-OFDM, the channel estimation is conventionally carried out based on the pseudo noise (PN) sequence. The PN sequence based channel estimation however suffers interference from adjacent OFDM data symbols. This paper proposes a new low-complexity dataaided channel estimation method with two-dimensional (2-D) estimate refinement and interpolation. Data-aided channel estimation is carried out using the rebuilt OFDM data symbols as virtual training symbols. In contrast to the classical turbo channel estimation, interleaving and decoding functions are not used when rebuilding OFDM data symbols thereby reducing the complexity. 2-D estimate refinement and interpolation are proposed to improve the data-aided channel estimation. Simulation results show that the performance of TDS-OFDM based DTMB system using the proposed method is very close to that with perfect channel estimation in terms of bit error rate (BER)

    Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks

    Get PDF
    This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection. --Abstract, page iv

    Channel estimation and synchronization for orthogonal frequency division multiplexing with known symbol padding

    Get PDF
    corecore