100 research outputs found

    Sparse approximate inverse preconditioners on high performance GPU platforms

    Get PDF
    Simulation with models based on partial differential equations often requires the solution of (sequences of) large and sparse algebraic linear systems. In multidimensional domains, preconditioned Krylov iterative solvers are often appropriate for these duties. Therefore, the search for efficient preconditioners for Krylov subspace methods is a crucial theme. Recent developments, especially in computing hardware, have renewed the interest in approximate inverse preconditioners in factorized form, because their application during the solution process can be more efficient. We present here some experiences focused on the approximate inverse preconditioners proposed by Benzi and Tůma from 1996 and the sparsification and inversion proposed by van Duin in 1999. Computational costs, reorderings and implementation issues are considered both on conventional and innovative computing architectures like Graphics Programming Units (GPUs)

    Regularized interior point methods for convex programming

    Get PDF
    Interior point methods (IPMs) constitute one of the most important classes of optimization methods, due to their unparalleled robustness, as well as their generality. It is well known that a very large class of convex optimization problems can be solved by means of IPMs, in a polynomial number of iterations. As a result, IPMs are being used to solve problems arising in a plethora of fields, ranging from physics, engineering, and mathematics, to the social sciences, to name just a few. Nevertheless, there remain certain numerical issues that have not yet been addressed. More specifically, the main drawback of IPMs is that the linear algebra task involved is inherently ill-conditioned. At every iteration of the method, one has to solve a (possibly large-scale) linear system of equations (also known as the Newton system), the conditioning of which deteriorates as the IPM converges to an optimal solution. If these linear systems are of very large dimension, prohibiting the use of direct factorization, then iterative schemes may have to be employed. Such schemes are significantly affected by the inherent ill-conditioning within IPMs. One common approach for improving the aforementioned numerical issues, is to employ regularized IPM variants. Such methods tend to be more robust and numerically stable in practice. Over the last two decades, the theory behind regularization has been significantly advanced. In particular, it is well known that regularized IPM variants can be interpreted as hybrid approaches combining IPMs with the proximal point method. However, it remained unknown whether regularized IPMs retain the polynomial complexity of their non-regularized counterparts. Furthermore, the very important issue of tuning the regularization parameters appropriately, which is also crucial in augmented Lagrangian methods, was not addressed. In this thesis, we focus on addressing the previous open questions, as well as on creating robust implementations that solve various convex optimization problems. We discuss in detail the effect of regularization, and derive two different regularization strategies; one based on the proximal method of multipliers, and another one based on a Bregman proximal point method. The latter tends to be more efficient, while the former is more robust and has better convergence guarantees. In addition, we discuss the use of iterative linear algebra within the presented algorithms, by proposing some general purpose preconditioning strategies (used to accelerate the iterative schemes) that take advantage of the regularized nature of the systems being solved. In Chapter 2 we present a dynamic non-diagonal regularization for IPMs. The non-diagonal aspect of this regularization is implicit, since all the off-diagonal elements of the regularization matrices are cancelled out by those elements present in the Newton system, which do not contribute important information in the computation of the Newton direction. Such a regularization, which can be interpreted as the application of a Bregman proximal point method, has multiple goals. The obvious one is to improve the spectral properties of the Newton system solved at each IPM iteration. On the other hand, the regularization matrices introduce sparsity to the aforementioned linear system, allowing for more efficient factorizations. We propose a rule for tuning the regularization dynamically based on the properties of the problem, such that sufficiently large eigenvalues of the non-regularized system are perturbed insignificantly. This alleviates the need of finding specific regularization values through experimentation, which is the most common approach in the literature. We provide perturbation bounds for the eigenvalues of the non-regularized system matrix, and then discuss the spectral properties of the regularized matrix. Finally, we demonstrate the efficiency of the method applied to solve standard small- and medium-scale linear and convex quadratic programming test problems. In Chapter 3 we combine an IPM with the proximal method of multipliers (PMM). The resulting algorithm (IP-PMM) is interpreted as a primal-dual regularized IPM, suitable for solving linearly constrained convex quadratic programming problems. We apply few iterations of the interior point method to each sub-problem of the proximal method of multipliers. Once a satisfactory solution of the PMM sub-problem is found, we update the PMM parameters, form a new IPM neighbourhood, and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under standard assumptions. To our knowledge, this is the first polynomial complexity result for a primal-dual regularized IPM. The algorithm is guided by the use of a single penalty parameter; that of the logarithmic barrier. In other words, we show that IP-PMM inherits the polynomial complexity of IPMs, as well as the strong convexity of the PMM sub-problems. The updates of the penalty parameter are controlled by IPM, and hence are well-tuned, and do not depend on the problem solved. Furthermore, we study the behavior of the method when it is applied to an infeasible problem, and identify a necessary condition for infeasibility. The latter is used to construct an infeasibility detection mechanism. Subsequently, we provide a robust implementation of the presented algorithm and test it over a set of small to large scale linear and convex quadratic programming problems, demonstrating the benefits of using regularization in IPMs as well as the reliability of the approach. In Chapter 4 we extend IP-PMM to the case of linear semi-definite programming (SDP) problems. In particular, we prove polynomial complexity of the algorithm, under mild assumptions, and without requiring exact computations for the Newton directions. We furthermore provide a necessary condition for lack of strong duality, which can be used as a basis for constructing detection mechanisms for identifying pathological cases within IP-PMM. In Chapter 5 we present general-purpose preconditioners for regularized Newton systems arising within regularized interior point methods. We discuss positive definite preconditioners, suitable for iterative schemes like the conjugate gradient (CG), or the minimal residual (MINRES) method. We study the spectral properties of the preconditioned systems, and discuss the use of each presented approach, depending on the properties of the problem under consideration. All preconditioning strategies are numerically tested on various medium- to large-scale problems coming from standard test sets, as well as problems arising from partial differential equation (PDE) optimization. In Chapter 6 we apply specialized regularized IPM variants to problems arising from portfolio optimization, machine learning, image processing, and statistics. Such problems are usually solved by specialized first-order approaches. The efficiency of the proposed regularized IPM variants is confirmed by comparing them against problem-specific state--of--the--art first-order alternatives given in the literature. Finally, in Chapter 7 we present some conclusions as well as open questions, and possible future research directions

    PDE-betinga optimering : prekondisjonerarar og metodar for diffuse domene

    Get PDF
    This thesis is mainly concerned with the efficient numerical solution of optimization problems subject to linear PDE-constraints, with particular focus on robust preconditioners and diffuse domain methods. Associated with such constrained optimization problems are the famous first-order KarushKuhn-Tucker (KKT) conditions. For certain minimization problems, the functions satisfying the KKT conditions are also optimal solutions of the original optimization problem, implying that we can solve the KKT system to obtain the optimum; the so-called “all-at-once” approach. We propose and analyze preconditioners for the different KKT systems we derive in this thesis.Denne avhandlinga ser i hovudsak på effektive numeriske løysingar av PDE-betinga optimeringsproblem, med eit særskilt fokus på robuste prekondisjonerar og “diffuse domain”-metodar. Assosiert med slike optimeringsproblem er dei velkjende Karush-Kuhn-Tucker (KKT)-føresetnadane. For mange betinga optimeringsproblem, vil funksjonar som tilfredstillar KKT-vilkåra samstundes vere ei optimal løysing på det opprinnelege optimeringsproblemet. Dette impliserar at vi kan løyse KKT-likningane for å finne optimum. Vi konstruerar og analyserar prekondisjonerar for dei forskjellige KKT-systema vi utleiar i denne avhandlinga

    Numerical solution of saddle point problems

    Full text link

    Diffusion equations and inverse problems regularization.

    Get PDF
    The present thesis can be split into two dfferent parts: The first part mainly deals with the porous and fast diffusion equations. Chapter 2 presents these equations in the Euclidean setting highlighting the technical issues that arise when trying to extend results in a Riemannian setting. Chapter 3 is devoted to the construction of exhaustion and cut-o_ functions with controlled gradient and Laplacian, on manifolds with Ricci curvature bounded from below by a (possibly unbounded) nonpositive function of the distance from a fixed reference point, and without any assumptions on the topology or the injectivity radius. The cut-offs are then applied to the study of the fast and porous media diffusion, of Lq-properties of the gradient and of the selfadjointness of Schrödinger-type operators. The second part is concerned with inverse problems regularization applied to image deblurring. In Chapter 5 new variants of the Tikhonov filter method, called fractional and weighted Tikhonov, are presented alongside their saturation properties and converse results on their convergence rates. New iterated fractional Tikhonov regularization methods are then introduced. In Chapter 6 the modified linearized Bregman algorithm is investigated. It is showed that the standard approach based on the block circulant circulant block preconditioner may provide low quality restored images and different preconditioning strategies are then proposed, which improve the quality of the restoration

    Variational Domain Decomposition For Parallel Image Processing

    Full text link
    Many important techniques in image processing rely on partial differential equation (PDE) problems, which exhibit spatial couplings between the unknowns throughout the whole image plane. Therefore, a straightforward spatial splitting into independent subproblems and subsequent parallel solving aimed at diminishing the total computation time does not lead to the solution of the original problem. Typically, significant errors at the local boundaries between the subproblems occur. For that reason, most of the PDE-based image processing algorithms are not directly amenable to coarse-grained parallel computing, but only to fine-grained parallelism, e.g. on the level of the particular arithmetic operations involved with the specific solving procedure. In contrast, Domain Decomposition (DD) methods provide several different approaches to decompose PDE problems spatially so that the merged local solutions converge to the original, global one. Thus, such methods distinguish between the two main classes of overlapping and non-overlapping methods, referring to the overlap between the adjacent subdomains on which the local problems are defined. Furthermore, the classical DD methods --- studied intensively in the past thirty years --- are primarily applied to linear PDE problems, whereas some of the current important image processing approaches involve solving of nonlinear problems, e.g. Total Variation (TV)-based approaches. Among the linear DD methods, non-overlapping methods are favored, since in general they require significanty fewer data exchanges between the particular processing nodes during the parallel computation and therefore reach a higher scalability. For that reason, the theoretical and empirical focus of this work lies primarily on non-overlapping methods, whereas for the overlapping methods we mainly stay with presenting the most important algorithms. With the linear non-overlapping DD methods, we first concentrate on the theoretical foundation, which serves as basis for gradually deriving the different algorithms thereafter. Although we make a connection between the very early methods on two subdomains and the current two-level methods on arbitrary numbers of subdomains, the experimental studies focus on two prototypical methods being applied to the model problem of estimating the optic flow, at which point different numerical aspects, such as the influence of the number of subdomains on the convergence rate, are explored. In particular, we present results of experiments conducted on a PC-cluster (a distributed memory parallel computer based on low-cost PC hardware for up to 144 processing nodes) which show a very good scalability of non-overlapping DD methods. With respect to nonlinear non-overlapping DD methods, we pursue two distinct approaches, both applied to nonlinear, PDE-based image denoising. The first approach draws upon the theory of optimal control, and has been successfully employed for the domain decomposition of Navier-Stokes equations. The second nonlinear DD approach, on the other hand, relies on convex programming and relies on the decomposition of the corresponding minimization problems. Besides the main subject of parallelization by DD methods, we also investigate the linear model problem of motion estimation itself, namely by proposing and empirically studying a new variational approach for the estimation of turbulent flows in the area of fluid mechanics
    corecore