12,940 research outputs found

    Hybrid Query Expansion on Ontology Graph in Biomedical Information Retrieval

    Get PDF
    Nowadays, biomedical researchers publish thousands of papers and journals every day. Searching through biomedical literature to keep up with the state of the art is a task of increasing difficulty for many individual researchers. The continuously increasing amount of biomedical text data has resulted in high demands for an efficient and effective biomedical information retrieval (BIR) system. Though many existing information retrieval techniques can be directly applied in BIR, BIR distinguishes itself in the extensive use of biomedical terms and abbreviations which present high ambiguity. First of all, we studied a fundamental yet simpler problem of word semantic similarity. We proposed a novel semantic word similarity algorithm and related tools called Weighted Edge Similarity Tools (WEST). WEST was motivated by our discovery that humans are more sensitive to the semantic difference due to the categorization than that due to the generalization/specification. Unlike most existing methods which model the semantic similarity of words based on either the depth of their Lowest Common Ancestor (LCA) or the traversal distance of between the word pair in WordNet, WEST also considers the joint contribution of the weighted distance between two words and the weighted depth of their LCA in WordNet. Experiments show that weighted edge based word similarity method has achieved 83.5% accuracy to human judgments. Query expansion problem can be viewed as selecting top k words which have the maximum accumulated similarity to a given word set. It has been proved as an effective method in BIR and has been studied for over two decades. However, most of the previous researches focus on only one controlled vocabulary: MeSH. In addition, early studies find that applying ontology won\u27t necessarily improve searching performance. In this dissertation, we propose a novel graph based query expansion approach which is able to take advantage of the global information from multiple controlled vocabularies via building a biomedical ontology graph from selected vocabularies in Metathesaurus. We apply Personalized PageRank algorithm on the ontology graph to rank and identify top terms which are highly relevant to the original user query, yet not presented in that query. Those new terms are reordered by a weighted scheme to prioritize specialized concepts. We multiply a scaling factor to those final selected terms to prevent query drifting and append them to the original query in the search. Experiments show that our approach achieves 17.7% improvement in 11 points average precision and recall value against Lucene\u27s default indexing and searching strategy and by 24.8% better against all the other strategies on average. Furthermore, we observe that expanding with specialized concepts rather than generalized concepts can substantially improve the recall-precision performance. Furthermore, we have successfully applied WEST from the underlying WordNet graph to biomedical ontology graph constructed by multiple controlled vocabularies in Metathesaurus. Experiments indicate that WEST further improve the recall-precision performance. Finally, we have developed a Graph-based Biomedical Search Engine (G-Bean) for retrieving and visualizing information from literature using our proposed query expansion algorithm. G-Bean accepts any medical related user query and processes them with expanded medical query to search for the MEDLINE database

    Improving patient record search: A meta-data based approach

    Get PDF
    The International Classification of Diseases (ICD) is a type of meta-data found in many Electronic Patient Records. Research to explore the utility of these codes in medical Information Retrieval (IR) applications is new, and many areas of investigation remain, including the question of how reliable the assignment of the codes has been. This paper proposes two uses of the ICD codes in two different contexts of search: Pseudo-Relevance Judgments (PRJ) and Pseudo-Relevance Feedback (PRF). We find that our approach to evaluate the TREC challenge runs using simulated relevance judgments has a positive correlation with the TREC official results, and our proposed technique for performing PRF based on the ICD codes significantly outperforms a traditional PRF approach. The results are found to be consistent over the two years of queries from the TREC medical test collection

    Biomedical information extraction for matching patients to clinical trials

    Get PDF
    Digital Medical information had an astonishing growth on the last decades, driven by an unprecedented number of medical writers, which lead to a complete revolution in what and how much information is available to the health professionals. The problem with this wave of information is that performing a precise selection of the information retrieved by medical information repositories is very exhaustive and time consuming for physicians. This is one of the biggest challenges for physicians with the new digital era: how to reduce the time spent finding the perfect matching document for a patient (e.g. intervention articles, clinical trial, prescriptions). Precision Medicine (PM) 2017 is the track by the Text REtrieval Conference (TREC), that is focused on this type of challenges exclusively for oncology. Using a dataset with a large amount of clinical trials, this track is a good real life example on how information retrieval solutions can be used to solve this types of problems. This track can be a very good starting point for applying information extraction and retrieval methods, in a very complex domain. The purpose of this thesis is to improve a system designed by the NovaSearch team for TREC PM 2017 Clinical Trials task, which got ranked on the top-5 systems of 2017. The NovaSearch team also participated on the 2018 track and got a 15% increase on precision compared to the 2017 one. It was used multiple IR techniques for information extraction and processing of data, including rank fusion, query expansion (e.g. Pseudo relevance feedback, Mesh terms expansion) and experiments with Learning to Rank (LETOR) algorithms. Our goal is to retrieve the best possible set of trials for a given patient, using precise documents filters to exclude the unwanted clinical trials. This work can open doors in what can be done for searching and perceiving the criteria to exclude or include the trials, helping physicians even on the more complex and difficult information retrieval tasks
    corecore