30,640 research outputs found

    Improved Balanced Flow Computation Using Parametric Flow

    No full text
    We present a new algorithm for computing balanced flows in equality networks arising in market equilibrium computations. The current best time bound for computing balanced flows in such networks requires O(n)O(n) maxflow computations, where nn is the number of nodes in the network [Devanur et al. 2008]. Our algorithm requires only a single parametric flow computation. The best algorithm for computing parametric flows [Gallo et al. 1989] is only by a logarithmic factor slower than the best algorithms for computing maxflows. Hence, the running time of the algorithms in [Devanur et al. 2008] and [Duan and Mehlhorn 2015] for computing market equilibria in linear Fisher and Arrow-Debreu markets improve by almost a factor of nn

    Aerodynamics of an airfoil with a jet issuing from its surface

    Get PDF
    A simple, two dimensional, incompressible and inviscid model for the problem posed by a two dimensional wing with a jet issuing from its lower surface is considered and a parametric analysis is carried out to observe how the aerodynamic characteristics depend on the different parameters. The mathematical problem constitutes a boundary value problem where the position of part of the boundary is not known a priori. A nonlinear optimization approach was used to solve the problem, and the analysis reveals interesting characteristics that may help to better understand the physics involved in more complex situations in connection with high lift systems

    One-log call iterative solution of the Colebrook equation for flow friction based on Pade polynomials

    Get PDF
    The 80 year-old empirical Colebrook function zeta, widely used as an informal standard for hydraulic resistance, relates implicitly the unknown flow friction factor lambda, with the known Reynolds number Re and the known relative roughness of a pipe inner surface epsilon* ; lambda = zeta(Re, epsilon* ,lambda). It is based on logarithmic law in the form that captures the unknown flow friction factor l in a way that it cannot be extracted analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap iterative algorithm based on Pade polynomials with only one log-call in total for the whole procedure (expensive log-calls are substituted with Pade polynomials in each iteration with the exception of the first). The proposed modification is computationally less demanding compared with the standard approaches of engineering practice, but does not influence the accuracy or the number of iterations required to reach the final balanced solution.Web of Science117art. no. 182

    One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    Get PDF
    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but non-universal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3×1033\times 10^3 frequencies) ×\times (unlimited number of temporal modes) into a new and computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this new entanglement resource.Comment: (v4) Consistent with published version; (v3) Fixed typo in arXiv abstract, 14 pages, 8 figures; (v2) Supplemental material incorporated into main text, additional explanations added, results unchanged, 14 pages, 8 figures; (v1) 5 pages (3 figures) + 6 pages (5 figures) of supplemental material; submitted for publicatio
    • …
    corecore