1,027 research outputs found

    Job Scheduling Using successive Linear Programming Approximations of a Sparse Model

    Get PDF
    EuroPar 2012In this paper we tackle the well-known problem of scheduling a collection of parallel jobs on a set of processors either in a cluster or in a multiprocessor computer. For the makespan objective, i.e., the completion time of the last job, this problem has been shown to be NP-Hard and several heuristics have already been proposed to minimize the execution time. We introduce a novel approach based on successive linear programming (LP) approximations of a sparse model. The idea is to relax an integer linear program and use lp norm-based operators to force the solver to find almost-integer solutions that can be assimilated to an integer solution. We consider the case where jobs are either rigid or moldable. A rigid parallel job is performed with a predefined number of processors while a moldable job can define the number of processors that it is using just before it starts its execution. We compare the scheduling approach with the classic Largest Task First list based algorithm and we show that our approach provides good results for small instances of the problem. The contributions of this paper are both the integration of mathematical methods in the scheduling world and the design of a promising approach which gives good results for scheduling problems with less than a hundred processors

    Optimal dynamic remapping of parallel computations

    Get PDF
    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Feedback and time are essential for the optimal control of computing systems

    Get PDF
    The performance, reliability, cost, size and energy usage of computing systems can be improved by one or more orders of magnitude by the systematic use of modern control and optimization methods. Computing systems rely on the use of feedback algorithms to schedule tasks, data and resources, but the models that are used to design these algorithms are validated using open-loop metrics. By using closed-loop metrics instead, such as the gap metric developed in the control community, it should be possible to develop improved scheduling algorithms and computing systems that have not been over-engineered. Furthermore, scheduling problems are most naturally formulated as constraint satisfaction or mathematical optimization problems, but these are seldom implemented using state of the art numerical methods, nor do they explicitly take into account the fact that the scheduling problem itself takes time to solve. This paper makes the case that recent results in real-time model predictive control, where optimization problems are solved in order to control a process that evolves in time, are likely to form the basis of scheduling algorithms of the future. We therefore outline some of the research problems and opportunities that could arise by explicitly considering feedback and time when designing optimal scheduling algorithms for computing systems

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Using Imprecise Computing for Improved Real-Time Scheduling

    Get PDF
    Conventional hard real-time scheduling is often overly pessimistic due to the worst case execution time estimation. The pessimism can be mitigated by exploiting imprecise computing in applications where occasional small errors are acceptable. This leverage is investigated in a few previous works, which are restricted to preemptive cases. We study how to make use of imprecise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic tasks with independent or cumulative errors due to imprecision. Simulation results show that the proposed techniques can significantly improve task schedulability and achieve desired accuracy– schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a prototyping implementation in Linux system. Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling while providing guarantee for critical tasks in presence of unexpected overrun. However, it is controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality mode, although they are still needed. Second, a single high-criticality job overrun leads to the pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality system simultaneously in multiprocessor scheduling, while those two issues are mostly focused on uniprocessor scheduling in several recent works. We study how to achieve graceful degradation of low-criticality tasks by continuing their executions with imprecise computing or even precise computing if there is sufficient utilization slack. Schedulability conditions under this Variable-Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knapsack formulation. Experiments are performed through both software simulations and Linux proto- typing with consideration of overhead. Schedulability of the proposed methods is studied so that the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline constraints. The proposed precision optimization can largely reduce computing errors compared to constantly executing low-criticality tasks with imprecise computing in high-criticality mode

    A UNIFIED HARDWARE/SOFTWARE PRIORITY SCHEDULING MODEL FOR GENERAL PURPOSE SYSTEMS

    Get PDF
    Migrating functionality from software to hardware has historically held the promise of enhancing performance through exploiting the inherent parallel nature of hardware. Many early exploratory efforts in repartitioning traditional software based services into hardware were hampered by expensive ASIC development costs. Recent advancements in FPGA technology have made it more economically feasible to explore migrating functionality across the hardware/software boundary. The flexibility of the FPGA fabric and availability of configurable soft IP components has opened the potential to rapidly and economically investigate different hardware/software partitions. Within the real time operating systems community, there has been continued interest in applying hardware/software co-design approaches to address scheduling issues such as latency and jitter. Many hardware based approaches have been reported to reduce the latency of computing the scheduling decision function itself. However continued adherence to classic scheduler invocation mechanisms can still allow variable latencies to creep into the time taken to make the scheduling decision, and ultimately into application timelines. This dissertation explores how hardware/software co-design can be applied past the scheduling decision itself to also reduce the non-predictable delays associated with interrupts and timers. By expanding the window of hardware/software co-design to these invocation mechanisms, we seek to understand if the jitter introduced by classical hardware/software partitionings can be removed from the timelines of critical real time user processes. This dissertation makes a case for resetting the classic boundaries of software thread level scheduling, software timers, hardware timers and interrupts. We show that reworking the boundaries of the scheduling invocation mechanisms helps to rectify the current imbalance of traditional hardware invocation mechanisms (timers and interrupts) and software scheduling policy (operating system scheduler). We re-factor these mechanisms into a unified hardware software priority scheduling model to facilitate improvements in performance, timeliness and determinism in all domains of computing. This dissertation demonstrates and prototypes the creation of a new framework that effects this basic policy change. The advantage of this approach lies within it's ability to unify, simplify and allow for more control within the operating systems scheduling policy
    • …
    corecore