41,036 research outputs found

    A 5-Approximation for Universal Facility Location

    Get PDF
    In this paper, we propose and analyze a local search algorithm for the Universal facility location problem. Our algorithm improves the approximation ratio of this problem from 5.83, given by Angel et al., to 5. A second major contribution of the paper is that it gets rid of the expensive multi operation that was a mainstay of all previous local search algorithms for capacitated facility location and universal facility location problem. The only operations that we require to prove the 5-approximation are add, open, and close. A multi operation is basically a combination of the open and close operations. The 5-approximation algorithm for the capacitated facility location problem, given by Bansal et al., also uses the multi operation. However, on careful observation, it turned out that add, open, and close operations are sufficient to prove a 5-factor for the problem. This resulted into an improved algorithm for the universal facility location problem, with an improved factor

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica

    An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem

    Full text link
    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location problem (UFL), which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye and Zhang. Note, that the approximability lower bound by Guha and Khuller is 1.463. An algorithm is a {\em (λf\lambda_f,λc\lambda_c)-approximation algorithm} if the solution it produces has total cost at most λf⋅F∗+λc⋅C∗\lambda_f \cdot F^* + \lambda_c \cdot C^*, where F∗F^* and C∗C^* are the facility and the connection cost of an optimal solution. Our new algorithm, which is a modification of the (1+2/e)(1+2/e)-approximation algorithm of Chudak and Shmoys, is a (1.6774,1.3738)-approximation algorithm for the UFL problem and is the first one that touches the approximability limit curve (Îłf,1+2e−γf)(\gamma_f, 1+2e^{-\gamma_f}) established by Jain, Mahdian and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances dominated by connection costs. When combined with a (1.11,1.7764)-approximation algorithm proposed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve the approximation ratio for the 3-level version of UFL.Comment: A journal versio

    An approximation algorithm for a facility location problem with stochastic demands

    Get PDF
    In this article we propose, for any Ï”>0\epsilon>0, a 2(1+Ï”)2(1+\epsilon)-approximation algorithm for a facility location problem with stochastic demands. This problem can be described as follows. There are a number of locations, where facilities may be opened and a number of demand points, where requests for items arise at random. The requests are sent to open facilities. At the open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. After constant times, the inventory is replenished to a fixed order up to level. The time interval between consecutive replenishments is called a reorder period. The problem is where to locate the facilities and how to assign the demand points to facilities at minimal cost per reorder period such that the above mentioned quality of service is insured. The incurred costs are the expected transportation costs from the demand points to the facilities, the operating costs (opening costs) of the facilities and the investment in inventory (inventory costs). \u

    Traffic-Redundancy Aware Network Design

    Full text link
    We consider network design problems for information networks where routers can replicate data but cannot alter it. This functionality allows the network to eliminate data-redundancy in traffic, thereby saving on routing costs. We consider two problems within this framework and design approximation algorithms. The first problem we study is the traffic-redundancy aware network design (RAND) problem. We are given a weighted graph over a single server and many clients. The server owns a number of different data packets and each client desires a subset of the packets; the client demand sets form a laminar set system. Our goal is to connect every client to the source via a single path, such that the collective cost of the resulting network is minimized. Here the transportation cost over an edge is its weight times times the number of distinct packets that it carries. The second problem is a facility location problem that we call RAFL. Here the goal is to find an assignment from clients to facilities such that the total cost of routing packets from the facilities to clients (along unshared paths), plus the total cost of "producing" one copy of each desired packet at each facility is minimized. We present a constant factor approximation for the RAFL and an O(log P) approximation for RAND, where P is the total number of distinct packets. We remark that P is always at most the number of different demand sets desired or the number of clients, and is generally much smaller.Comment: 17 pages. To be published in the proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithm

    Tight Analysis of a Multiple-Swap Heuristic for Budgeted Red-Blue Median

    Get PDF
    Budgeted Red-Blue Median is a generalization of classic kk-Median in that there are two sets of facilities, say R\mathcal{R} and B\mathcal{B}, that can be used to serve clients located in some metric space. The goal is to open krk_r facilities in R\mathcal{R} and kbk_b facilities in B\mathcal{B} for some given bounds kr,kbk_r, k_b and connect each client to their nearest open facility in a way that minimizes the total connection cost. We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-swap local search heuristic can be used to obtain a (5+Ï”)(5+\epsilon)-approximation for Budgeted Red-Blue Median for any constant Ï”>0\epsilon > 0. This is an improvement over their single swap analysis and beats the previous best approximation guarantee of 8 by Swamy [2014]. We also present a matching lower bound showing that for every p≄1p \geq 1, there are instances of Budgeted Red-Blue Median with local optimum solutions for the pp-swap heuristic whose cost is 5+Ω(1p)5 + \Omega\left(\frac{1}{p}\right) times the optimum solution cost. Thus, our analysis is tight up to the lower order terms. In particular, for any Ï”>0\epsilon > 0 we show the single-swap heuristic admits local optima whose cost can be as bad as 7−ϔ7-\epsilon times the optimum solution cost
    • 

    corecore