51 research outputs found

    Computing a Subtrajectory Cluster from c-packed Trajectories

    Full text link
    We present a near-linear time approximation algorithm for the subtrajectory cluster problem of cc-packed trajectories. The problem involves finding mm subtrajectories within a given trajectory TT such that their Fr\'echet distances are at most (1+Δ)d(1 + \varepsilon)d, and at least one subtrajectory must be of length~ll or longer. A trajectory TT is cc-packed if the intersection of TT and any ball BB with radius rr is at most c⋅rc \cdot r in length. Previous results by Gudmundsson and Wong \cite{GudmundssonWong2022Cubicupperlower} established an Ω(n3)\Omega(n^3) lower bound unless the Strong Exponential Time Hypothesis fails, and they presented an O(n3log⁥2n)O(n^3 \log^2 n) time algorithm. We circumvent this conditional lower bound by studying subtrajectory cluster on cc-packed trajectories, resulting in an algorithm with an O((c2n/Δ2)log⁥(c/Δ)log⁥(n/Δ))O((c^2 n/\varepsilon^2)\log(c/\varepsilon)\log(n/\varepsilon)) time complexity

    Fine-grained complexity and algorithm engineering of geometric similarity measures

    Get PDF
    Point sets and sequences are fundamental geometric objects that arise in any application that considers movement data, geometric shapes, and many more. A crucial task on these objects is to measure their similarity. Therefore, this thesis presents results on algorithms, complexity lower bounds, and algorithm engineering of the most important point set and sequence similarity measures like the FrĂ©chet distance, the FrĂ©chet distance under translation, and the Hausdorff distance under translation. As an extension to the mere computation of similarity, also the approximate near neighbor problem for the continuous FrĂ©chet distance on time series is considered and matching upper and lower bounds are shown.Punktmengen und Sequenzen sind fundamentale geometrische Objekte, welche in vielen Anwendungen auftauchen, insbesondere in solchen die Bewegungsdaten, geometrische Formen, und Ă€hnliche Daten verarbeiten. Ein wichtiger Bestandteil dieser Anwendungen ist die Berechnung der Ähnlichkeit von Objekten. Diese Dissertation prĂ€sentiert Resultate, genauer gesagt Algorithmen, untere KomplexitĂ€tsschranken und Algorithm Engineering der wichtigsten Ähnlichkeitsmaße fĂŒr Punktmengen und Sequenzen, wie zum Beispiel FrĂ©chetdistanz, FrĂ©chetdistanz unter Translation und Hausdorffdistanz unter Translation. Als eine Erweiterung der bloßen Berechnung von Ähnlichkeit betrachten wir auch das Near Neighbor Problem fĂŒr die kontinuierliche FrĂ©chetdistanz auf Zeitfolgen und zeigen obere und untere Schranken dafĂŒr

    Approximating the Packedness of Polygonal Curves

    Get PDF
    In 2012 Driemel et al. \cite{DBLP:journals/dcg/DriemelHW12} introduced the concept of cc-packed curves as a realistic input model. In the case when cc is a constant they gave a near linear time (1+Δ)(1+\varepsilon)-approximation algorithm for computing the Fr\'echet distance between two cc-packed polygonal curves. Since then a number of papers have used the model. In this paper we consider the problem of computing the smallest cc for which a given polygonal curve in Rd\mathbb{R}^d is cc-packed. We present two approximation algorithms. The first algorithm is a 22-approximation algorithm and runs in O(dn2log⁥n)O(dn^2 \log n) time. In the case d=2d=2 we develop a faster algorithm that returns a (6+Δ)(6+\varepsilon)-approximation and runs in O((n/Δ3)4/3polylog(n/Δ)))O((n/\varepsilon^3)^{4/3} polylog (n/\varepsilon))) time. We also implemented the first algorithm and computed the approximate packedness-value for 16 sets of real-world trajectories. The experiments indicate that the notion of cc-packedness is a useful realistic input model for many curves and trajectories.Comment: A preliminary version to appear in ISAAC 202

    Approximability of the Discrete {Fr\'echet} Distance

    No full text
    <p>The Fréchet distance is a popular and widespread distance measure for point sequences and for curves. About two years ago, Agarwal et al. [SIAM J. Comput. 2014] presented a new (mildly) subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several new algorithms and lower bounds.</p><p>In this paper, we study the approximability of the discrete Fréchet distance. Building on a recent result by Bringmann [FOCS 2014], we present a new conditional lower bound showing that strongly subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in the one-dimensional case and even if the solution may be approximated up to a factor of 1.399.</p><p>This raises the question of how well we can approximate the Fréchet distance (of two given dd-dimensional point sequences of length nn) in strongly subquadratic time. Previously, no general results were known. We present the first such algorithm by analysing the approximation ratio of a simple, linear-time greedy algorithm to be 2Θ(n)2^{\Theta(n)}. Moreover, we design an α\alpha-approximation algorithm that runs in time O(nlog⁥n+n2/α)O(n\log n + n^2/\alpha), for any α∈[1,n]\alpha\in [1, n]. Hence, an nΔn^\varepsilon-approximation of the Fréchet distance can be computed in strongly subquadratic time, for any \varepsilon > 0.</p

    Approximating (k,ℓ)(k,\ell)-center clustering for curves

    Get PDF
    The Euclidean kk-center problem is a classical problem that has been extensively studied in computer science. Given a set G\mathcal{G} of nn points in Euclidean space, the problem is to determine a set C\mathcal{C} of kk centers (not necessarily part of G\mathcal{G}) such that the maximum distance between a point in G\mathcal{G} and its nearest neighbor in C\mathcal{C} is minimized. In this paper we study the corresponding (k,ℓ)(k,\ell)-center problem for polygonal curves under the Fr\'echet distance, that is, given a set G\mathcal{G} of nn polygonal curves in Rd\mathbb{R}^d, each of complexity mm, determine a set C\mathcal{C} of kk polygonal curves in Rd\mathbb{R}^d, each of complexity ℓ\ell, such that the maximum Fr\'echet distance of a curve in G\mathcal{G} to its closest curve in C\mathcal{C} is minimized. In this paper, we substantially extend and improve the known approximation bounds for curves in dimension 22 and higher. We show that, if ℓ\ell is part of the input, then there is no polynomial-time approximation scheme unless P=NP\mathsf{P}=\mathsf{NP}. Our constructions yield different bounds for one and two-dimensional curves and the discrete and continuous Fr\'echet distance. In the case of the discrete Fr\'echet distance on two-dimensional curves, we show hardness of approximation within a factor close to 2.5982.598. This result also holds when k=1k=1, and the NP\mathsf{NP}-hardness extends to the case that ℓ=∞\ell=\infty, i.e., for the problem of computing the minimum-enclosing ball under the Fr\'echet distance. Finally, we observe that a careful adaptation of Gonzalez' algorithm in combination with a curve simplification yields a 33-approximation in any dimension, provided that an optimal simplification can be computed exactly. We conclude that our approximation bounds are close to being tight.Comment: 24 pages; results on minimum-enclosing ball added, additional author added, general revisio

    Tight(er) bounds for similarity measures, smoothed approximation and broadcasting

    Get PDF
    In this thesis, we prove upper and lower bounds on the complexity of sequence similarity measures, the approximability of geometric problems on realistic inputs, and the performance of randomized broadcasting protocols. The first part approaches the question why a number of fundamental polynomial-time problems - specifically, Dynamic Time Warping, Longest Common Subsequence (LCS), and the Levenshtein distance - resists decades-long attempts to obtain polynomial improvements over their simple dynamic programming solutions. We prove that any (strongly) subquadratic algorithm for these and related sequence similarity measures would refute the Strong Exponential Time Hypothesis (SETH). Focusing particularly on LCS, we determine a tight running time bound (up to lower order factors and conditional on SETH) when the running time is expressed in terms of all input parameters that have been previously exploited in the extensive literature. In the second part, we investigate the approximation performance of the popular 2-Opt heuristic for the Traveling Salesperson Problem using the smoothed analysis paradigm. For the FrĂ©chet distance, we design an improved approximation algorithm for the natural input class of c-packed curves, matching a conditional lower bound. Finally, in the third part we prove tighter performance bounds for processes that disseminate a piece of information, either as quickly as possible (rumor spreading) or as anonymously as possible (cryptogenography).Die vorliegende Dissertation beweist obere und untere Schranken an die KomplexitĂ€t von SequenzĂ€hnlichkeitsmaßen, an die Approximierbarkeit geometrischer Probleme auf realistischen Eingaben und an die EffektivitĂ€t randomisierter Kommunikationsprotokolle. Der erste Teil befasst sich mit der Frage, warum fĂŒr eine Vielzahl fundamentaler Probleme im Polynomialzeitbereich - insbesondere fĂŒr das Dynamic-Time-Warping, die lĂ€ngste gemeinsame Teilfolge (LCS) und die Levenshtein-Distanz - seit Jahrzehnten keine Algorithmen gefunden werden konnten, die polynomiell schneller sind als ihre einfachen Lösungen mittels dynamischer Programmierung. Wir zeigen, dass ein (im strengen Sinne) subquadratischer Algorithmus fĂŒr diese und verwandte Ähnlichkeitsmaße die starke Exponentialzeithypothese (SETH) widerlegen wĂŒrde. FĂŒr LCS zeigen wir eine scharfe Schranke an die optimale Laufzeit (unter der SETH und bis auf Faktoren niedrigerer Ordnung) in AbhĂ€ngigkeit aller bisher untersuchten Eingabeparameter. Im zweiten Teil untersuchen wir die ApproximationsgĂŒte der klassischen 2-Opt-Heuristik fĂŒr das Problem des Handlungsreisenden anhand des Smoothed-Analysis-Paradigmas. Weiterhin entwickeln wir einen verbesserten Approximationsalgorithmus fĂŒr die FrĂ©chet-Distanz auf einer Klasse natĂŒrlicher Eingaben. Der letzte Teil beweist neue Schranken fĂŒr die EffektivitĂ€t von Prozessen, die Informationen entweder so schnell wie möglich (Rumor-Spreading) oder so anonym wie möglich (Kryptogenografie) verbreiten

    On the Fine-Grained Complexity of Least Weight Subsequence in Multitrees and Bounded Treewidth DAGs

    Get PDF
    • 

    corecore