726 research outputs found

    Improved algorithms for computing determinants and resultants

    Get PDF
    AbstractOur first contribution is a substantial acceleration of randomized computation of scalar, univariate, and multivariate matrix determinants, in terms of the output-sensitive bit operation complexity bounds, including computation modulo a product of random primes from a fixed range. This acceleration is dramatic in a critical application, namely solving polynomial systems and related studies, via computing the resultant. This is achieved by combining our techniques with the primitive-element method, which leads to an effective implicit representation of the roots. We systematically examine quotient formulae of Sylvester-type resultant matrices, including matrix polynomials and the u-resultant. We reduce the known bit operation complexity bounds by almost an order of magnitude, in terms of the resultant matrix dimension. Our theoretical and practical improvements cover the highly important cases of sparse and degenerate systems

    Efficiently Detecting Torsion Points and Subtori

    Full text link
    Suppose X is the complex zero set of a finite collection of polynomials in Z[x_1,...,x_n]. We show that deciding whether X contains a point all of whose coordinates are d_th roots of unity can be done within NP^NP (relative to the sparse encoding), under a plausible assumption on primes in arithmetic progression. In particular, our hypothesis can still hold even under certain failures of the Generalized Riemann Hypothesis, such as the presence of Siegel-Landau zeroes. Furthermore, we give a similar (but UNconditional) complexity upper bound for n=1. Finally, letting T be any algebraic subgroup of (C^*)^n we show that deciding whether X contains T is coNP-complete (relative to an even more efficient encoding),unconditionally. We thus obtain new non-trivial families of multivariate polynomial systems where deciding the existence of complex roots can be done unconditionally in the polynomial hierarchy -- a family of complexity classes lying between PSPACE and P, intimately connected with the P=?NP Problem. We also discuss a connection to Laurent's solution of Chabauty's Conjecture from arithmetic geometry.Comment: 21 pages, no figures. Final version, with additional commentary and references. Also fixes a gap in Theorems 2 (now Theorem 1.3) regarding translated subtor

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    Full text link
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve
    • …
    corecore