21,928 research outputs found

    Facial Expression Recognition

    Get PDF

    Graphical model based facial feature point tracking in a vehicle environment

    Get PDF
    Facial feature point tracking is a research area that can be used in human-computer interaction (HCI), facial expression analysis, fatigue detection, etc. In this paper, a statistical method for facial feature point tracking is proposed. Feature point tracking is a challenging topic in case of uncertain data because of noise and/or occlusions. With this motivation, a graphical model that incorporates not only temporal information about feature point movements, but also information about the spatial relationships between such points is built. Based on this model, an algorithm that achieves feature point tracking through a video observation sequence is implemented. The proposed method is applied on 2D gray scale real video sequences taken in a vehicle environment and the superiority of this approach over existing techniques is demonstrated

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a personā€™s ā€˜Prakrutiā€™. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a personā€™s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Directional Sensitivity of Gaze-Collinearity Features in Liveness Detection

    Get PDF
    To increase the trust in using face recognition systems, these need to be capable of differentiating between face images captured from a real person and those captured from photos or similar artifacts presented at the sensor. Methods have been published for face liveness detection by measuring the gaze of a user while the user tracks an object on the screen, which appears at pre-defined, places randomly. In this paper we explore the sensitivity of such a system to different stimulus alignments. The aim is to establish whether there is such sensitivity and if so to explore how this may be exploited for improving the design of the stimulus. The results suggest that collecting feature points along the horizontal direction is more effective than the vertical direction for liveness detection
    • ā€¦
    corecore