2,303 research outputs found

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing

    Get PDF
    This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extracted geometry to partition the scaffold into a number of uniformly gradient healing regions. Computer models of 3D engineered porous wound scaffolds are then developed for solid freeform modeling and fabrication. Spatial variation over biomaterial and loaded bio-molecule concentration is developed based on wound healing requirements. Release of bio-molecules over the uniform healing regions is controlled by varying their amount and entrapping biomaterial concentration. Thus, localized controlled release is developed to improve wound healing. A prototype multi-syringe single nozzle deposition system is used to fabricate a sample scaffold. Proposed methodology is implemented and illustrative examples are presented in this paper

    Mechanisms associated with deep tissue injury induced by sustained compressive loading

    Get PDF

    Linking bone development on the caudal aspect of the distal phalanx with lameness during life

    Get PDF
    Claw horn disruption lesions (CHDL; sole hemorrhage, sole ulcer, and white line disease) cause a large proportion of lameness in dairy cattle, yet their etiopathogenesis remains poorly understood. Untreated CHDL may be associated with damage to the internal anatomy of the foot, including to the caudal aspect of the distal phalanx upon which bone developments have been reported with age and with sole ulcers at slaughter. The primary aim of this study was to assess whether bone development was associated with poor locomotion and occurrence of CHDL during a cow’s life. A retrospective cohort study imaged 282 hind claws from 72 Holstein-Friesian dairy cows culled from a research herd using X-ray micro–computed tomography (μ-CT; resolution: 0.11 mm). Four measures of bone development were taken from the caudal aspect of each distal phalanx, in caudal, ventral, and dorsal directions, and combined within each claw. Cow-level variables were constructed to quantify the average bone development on all hind feet (BD-Ave) and bone development on the most severely affected claw (BD-Max). Weekly locomotion scores (1–5 scale) were available from first calving. The variables BD-Ave and BD-Max were used as outcomes in linear regression models; the explanatory variables included locomotion score during life, age, binary variables denoting lifetime occurrence of CHDL and of infectious causes of lameness, and other cow variables. Both BD-Max and BD-Ave increased with age, CHDL occurrence, and an increasing proportion of locomotion scores at which a cow was lame (score 4 or 5). The models estimated that BD-Max would be 9.8 mm (SE 3.9) greater in cows that had been lame at >50% of scores within the 12 mo before slaughter (compared with cows that had been assigned no lame scores during the same period), or 7.0 mm (SE 2.2) greater if the cow had been treated for a CHDL during life (compared with cows that had not). Additionally, histology demonstrated that new bone development was osteoma, also termed “exostosis.” Age explained much of the variation in bone development. The association between bone development and locomotion score during life is a novel finding, and bone development appears specific to CHDL. Bone development on the most severely affected foot was the best explained outcome and would seem most likely to influence locomotion score. To stop irreparable anatomical damage within the foot, early identification of CHDL and effective treatment could be critical

    Wound Healing Assessment Using Digital Photography: A Review

    Full text link
    • …
    corecore