1,788 research outputs found

    Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

    Get PDF
    This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: González, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin

    Implementation of digital pheromones in PSO accelerated by commodity Graphics Hardware

    Get PDF
    In this paper, a model for Graphics Processing Unit (GPU) implementation of Particle Swarm Optimization (PSO) using digital pheromones to coordinate swarms within ndimensional design spaces is presented. Previous work by the authors demonstrated the capability of digital pheromones within PSO for searching n-dimensional design spaces with improved accuracy, efficiency and reliability in both serial and parallel computing environments using traditional CPUs. Modern GPUs have proven to outperform the number of floating point operations when compared to CPUs through inherent data parallel architecture and higher bandwidth capabilities. The advent of programmable graphics hardware in the recent times further provided a suitable platform for scientific computing particularly in the field of design optimization. However, the data parallel architecture of GPUs requires a specialized formulation for leveraging its computational capabilities. When the objective function computations are appropriately formulated for GPUs, it is theorized that the solution efficiency (speed) can be significantly increased while maintaining solution accuracy. The development of this method together with a number of multi-modal unconstrained test problems are tested and presented in this paper

    Towards a Better Understanding of the Local Attractor in Particle Swarm Optimization: Speed and Solution Quality

    Full text link
    Particle Swarm Optimization (PSO) is a popular nature-inspired meta-heuristic for solving continuous optimization problems. Although this technique is widely used, the understanding of the mechanisms that make swarms so successful is still limited. We present the first substantial experimental investigation of the influence of the local attractor on the quality of exploration and exploitation. We compare in detail classical PSO with the social-only variant where local attractors are ignored. To measure the exploration capabilities, we determine how frequently both variants return results in the neighborhood of the global optimum. We measure the quality of exploitation by considering only function values from runs that reached a search point sufficiently close to the global optimum and then comparing in how many digits such values still deviate from the global minimum value. It turns out that the local attractor significantly improves the exploration, but sometimes reduces the quality of the exploitation. As a compromise, we propose and evaluate a hybrid PSO which switches off its local attractors at a certain point in time. The effects mentioned can also be observed by measuring the potential of the swarm

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Hybrid Sine Cosine Algorithm for Solving Engineering Optimization Problems

    Get PDF
    Engineering design optimization problems are difficult to solve because the objective function is often complex, with a mix of continuous and discrete design variables and various design constraints. Our research presents a novel hybrid algorithm that integrates the benefits of the sine cosine algorithm (SCA) and artificial bee colony (ABC) to address engineering design optimization problems. The SCA is a recently developed metaheuristic algorithm with many advantages, such as good search ability and reasonable execution time, but it may suffer from premature convergence. The enhanced SCA search equation is proposed to avoid this drawback and reach a preferable balance between exploitation and exploration abilities. In the proposed hybrid method, named HSCA, the SCA with improved search strategy and the ABC algorithm with two distinct search equations are run alternately during working on the same population. The ABC with multiple search equations can provide proper diversity in the population so that both algorithms complement each other to create beneficial cooperation from their merger. Certain feasibility rules are incorporated in the HSCA to steer the search towards feasible areas of the search space. The HSCA is applied to fifteen demanding engineering design problems to investigate its performance. The presented experimental results indicate that the developed method performs better than the basic SCA and ABC. The HSCA accomplishes pretty competitive results compared to other recent state-of-the-art methods

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    GPU Implementation of DPSO-RE Algorithm for Parameters Identification of Surface PMSM Considering VSI Nonlinearity

    Get PDF
    In this paper, an accurate parameter estimation model of surface permanent magnet synchronous machines (SPMSMs) is established by taking into account voltage-source-inverter (VSI) nonlinearity. A fast dynamic particle swarm optimization (DPSO) algorithm combined with a receptor editing (RE) strategy is proposed to explore the optimal values of parameter estimations. This combination provides an accelerated implementation on graphics processing unit (GPU), and the proposed method is, therefore, referred to as G-DPSORE. In G-DPSO-RE, a dynamic labor division strategy is incorporated into the swarms according to the designed evolutionary factor during the evolution process. Two novel modifications of the movement equation are designed to update the velocity of particles. Moreover, a chaotic-logistic-based immune RE operator is developed to facilitate the global best individual (gBest particle) to explore a potentially better region. Furthermore, a GPU parallel acceleration technique is utilized to speed up parameter estimation procedure. It has been demonstrated that the proposed method is effective for simultaneous estimation of the PMSM parameters and the disturbance voltage (Vdead) due to VSI nonlinearity from experimental data for currents and rotor speed measured with inexpensive equipment. The influence of the VSI nonlinearity on the accuracy of parameter estimation is analyzed
    corecore