110 research outputs found

    Treatment-Based Classi?cation in Residential Wireless Access Points

    Get PDF
    IEEE 802.11 wireless access points (APs) act as the central communication hub inside homes, connecting all networked devices to the Internet. Home users run a variety of network applications with diverse Quality-of-Service requirements (QoS) through their APs. However, wireless APs are often the bottleneck in residential networks as broadband connection speeds keep increasing. Because of the lack of QoS support and complicated configuration procedures in most off-the-shelf APs, users can experience QoS degradation with their wireless networks, especially when multiple applications are running concurrently. This dissertation presents CATNAP, Classification And Treatment iN an AP , to provide better QoS support for various applications over residential wireless networks, especially timely delivery for real-time applications and high throughput for download-based applications. CATNAP consists of three major components: supporting functions, classifiers, and treatment modules. The supporting functions collect necessary flow level statistics and feed it into the CATNAP classifiers. Then, the CATNAP classifiers categorize flows along three-dimensions: response-based/non-response-based, interactive/non-interactive, and greedy/non-greedy. Each CATNAP traffic category can be directly mapped to one of the following treatments: push/delay, limited advertised window size/drop, and reserve bandwidth. Based on the classification results, the CATNAP treatment module automatically applies the treatment policy to provide better QoS support. CATNAP is implemented with the NS network simulator, and evaluated against DropTail and Strict Priority Queue (SPQ) under various network and traffic conditions. In most simulation cases, CATNAP provides better QoS supports than DropTail: it lowers queuing delay for multimedia applications such as VoIP, games and video, fairly treats FTP flows with various round trip times, and is even functional when misbehaving UDP traffic is present. Unlike current QoS methods, CATNAP is a plug-and-play solution, automatically classifying and treating flows without any user configuration, or any modification to end hosts or applications

    Improvements to end-to-end performance of low-power wireless networks

    Get PDF
    Over the last decades, wireless technologies have become an important part of our daily lives. A plentitude of new types of networks based on wireless technologies have emerged, often replacing wired solutions. In this development, not only the number and the types of devices equipped with wireless transceivers have significantly increased, also the variety of wireless technologies has grown considerably. Moreover, Internet access for wireless devices has paved the way for a large variety of new private, business, and research applications. Great efforts have been made by the research community and the industry to develop standards, specifications, and communication protocols for networks of constrained devices, we refer to as Wireless Sensor Networks (WSNs). The Institute of Electrical and Electronics Engineers (IEEE) defined the 802.15.4 standard for Personal Area Networks (PANs). With the introduction of an adaptation layer which makes IEEE 802.15.4 networks IPv6-capable, interconnecting billions of constrained devices has become possible and is expected to become a reality in the near future. The vision that embraces the idea of interweaving Internet technology with any type of smart objects, such as wearable devices or sensors of a WSN, is called the Internet of Things (IoT). The main goal of this thesis is the improvement of the performance of low-power wireless networks. Given the wide scope of application scenarios and networking solutions proposed for such networks, the development and optimization of communication protocols for wireless low-power devices is a challenging task: The hardware restrictions of constrained devices, specific application scenarios that may vary from one network to another, and the integration of WSNs into the IoT require new approaches to the design and evaluation of communication protocols. To face these challenges and to find solutions for them, research needs to be carried out. Mechanisms and parameter settings of communication protocol stacks for WSNs that are crucial to the network performance need to be identified, optimized, and complemented by adding new ones. The first contribution of this thesis is the improvement of end-to-end performance for IEEE 802.15.4-based PANs, where default parameter settings of common communication protocols are analyzed and evaluated with regard to their impact on the network performance. Physical evaluations are carried out in a large testbed, addressing the important question of whether the default and allowed range settings defined for common communication protocols are efficient or whether alternative settings may yield a better performance. The second contribution of this thesis is the improvement of end-to-end performance for ZigBee wireless HA networks. ZigBee is an important standard for low-power wireless networks and the investigations carried out address the crucial lack of investigation the ZigBee HA performance evaluations through physical experiments and potential ways to improve the network performance based on these experiments. Eventually, this thesis focuses on the improvement of the congestion control (CC) mechanism applied by the Constrained Application Protocol (CoAP) used in IoT communications. For the handling of the possible congestion in the IoT produced by the plethora of the devices and/or link errors innate to low-power radio communications, the default CC mechanism it lacks an advanced CC algorithm. Given CoAP's high relevance for IoT communications, an advanced CC algorithm should be capable of adapting to these particularities of IoT communications. This thesis contributes to this topic with the design and optimization of the CoAP Advanced Congestion Control/Simple (CoCoA) protocol, an advanced CC mechanism for CoAP.The investigations of advanced CC mechanisms for CoAP involve extensive performance evaluations in simulated networks and physical experiments in real testbeds using different communication technologies.En les últimes dècades, les tecnologies sense fils s'han convertit en una part important de la nostra vida quotidiana. Una àmplia varietat de nous tipus de xarxes basades en tecnologies sense fils han sorgit, sovint reemplaçant solucions cablejades. En aquest desenvolupament, no només el nombre i els tipus de dispositius equipats amb transceptors sense fils han augmentat significativament, també la varietat de tecnologies sense fils ha crescut de manera considerable. D'altra banda, l'accés a Internet per als dispositius sense fils ha donat pas a una gran varietat de noves aplicacions privades, comercials i d'investigació. La comunitat científica i la indústria han fet grans esforços per desenvolupar normes, especificacions i protocols de comunicació per a xarxes de sensors sense fils (WSNs). L'Institut d'Enginyeria Elèctrica i Electrònica (IEEE) defineix l'estàndard 802.15.4 per a xarxes d'àrea personal (PAN). Amb la introducció d'una capa d'adaptació que possibilita les IEEE 802.15.4 xarxes compatibles amb IPv6, la interconnexió de milers de milions de dispositius restringits s'ha fet possible. La idea d'entreteixir la tecnologia d'Internet amb qualsevol tipus d'objectes intel·ligents, com els dispositius o sensors d'una WSN és coneguda com la Internet de les Coses (IoT). L'objectiu principal d'aquesta tesi és la millora del rendiment de les WSNs. Donada l'àmplia gamma d'escenaris d'aplicacions i solucions de xarxes proposats per a aquest tipus de xarxes, el desenvolupament i l'optimització dels protocols de comunicació per a dispositius de WSNs és una tasca difícil: les limitacions de capacitats dels dispositius restringits, escenaris d'aplicació específics que poden variar d'una xarxa a l'altra, i la integració de les WSNs a la IoT requereixen nous enfocaments per al disseny i avaluació de protocols de comunicació. Cal identificar mecanismes i configuracions de paràmetres de les piles de protocols de comunicació per a WSNs que són elementals per al rendiment de la xarxa, optimitzar-los, i complementar-los amb l'addició d'altres de nous. La primera contribució d'aquesta tesi és la millora del rendiment extrem a extrem per PANs basat en IEEE 802.15.4, on s'analitza la configuració de paràmetres que es fan servir per defecte en protocols de comunicació comuns i s'avalua el seu impacte en el rendiment de la xarxa. Avaluacions físiques en una xarxa de sensors permeten fer front a la important qüestió de si els valors estàndards dels paràmetres són eficients o si ajustant-los es pot proporcionar un millor rendiment. La segona contribució d'aquesta tesi és l'optimització del rendiment extrem a extrem de xarxes ZigBee domòtiques (HA) sense fils. ZigBee és un estàndard important per a WSNs. Els estudis duts a terme cobreixen la important falta d'investigació d'avaluacions de rendiment de xarxes HA de ZigBee mitjançant experiments físics i mostrant formes per millorar el rendiment de la xarxa en base d'aquests experiments. Finalment, aquesta tesi es centra en la millora del mecanisme bàsic de control de congestió (CC) aplicada pel Constrained Application Protocol (CoAP) utilitzat en les comunicacions de la IoT. És necessari un algoritme de CC avançat per al control de la possible congestió en la IoT produïda per la plètora de dispositius i/o errors d'enllaç naturals per a les comunicacions de ràdio de baixa potencia. Donada l'alta rellevància de CoAP per a les comunicacions en la IoT, un algoritme CC avançat ha de ser capaç d'adaptar-se a les particularitats de les comunicacions de la IoT. Aquesta tesi contribueix al problema amb el disseny i l'optimització Control de Congestió Avançat / Simple del CoAP (CoCoA), un mecanisme de CC avançat per CoAP. Les investigacions de mecanismes de CC avançats per CoAP impliquen avaluacions extenses en xarxes simulades i experiments físics en xarxes reals utilitzant diferents tecnologies de comunicacions

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Efficient Employment of Large Format Sensor Data Transfer Architectures

    Get PDF
    Due to the increasing quantity of data collected by Air Force intelligence, surveillance and reconnaissance (ISR) assets and the focus on timely access to the data collected by these systems, operational data transfer network architectures have become a critical component of their employment in the intelligence production process. Efficient utilization of the provided long-haul communications component of the ISR system improves the value of the single asset to the warfighter and enables connectivity of additional assets via the data transfer network architecture. This research effort focused on the creation and implementation of a structured test design methodology based on the principles of Design of Experiments to propose recommendations for optimization of one such operational architecture while avoiding the common pitfalls of inadequate and inefficient test design and implementation. Factors that could influence the performance of the data transfer network architecture were researched and evaluated to recommend the factors of interest that most greatly affect the efficiency of the operational architecture. To support this evaluation, an emulated network testbed was utilized to develop a representative model of system efficiency. The results of this model indicate that increased aggressiveness for data transfer leads to decreased efficiency in the attempt to utilize available network resources, especially in realm of operations under study that represent non-traditional bandwidth delay product (BDP) networks where network delay is the dominating factor in the determination of BDP. The analysis documented a baseline model of system performance that will be used to guide ongoing maintenance, sustainment and enhancement efforts for the current data transfer capability and provides insight into the recommended test design process for use in development and deployment of future capabilities. The ability to model system performance through the use of a structured and straight-forward process allows for the inclusion of the test design and analysis process in software design and development, as well as, system deployment and operations improvements

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Delay-Tolerant ICN and Its Application to LoRa

    Full text link
    Connecting long-range wireless networks to the Internet imposes challenges due to vastly longer round-trip-times (RTTs). In this paper, we present an ICN protocol framework that enables robust and efficient delay-tolerant communication to edge networks. Our approach provides ICN-idiomatic communication between networks with vastly different RTTs. We applied this framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-Internet and asynchronous data production in the LoRa edge. Instead of using LoRaWAN, we implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY and ICN protocol mechanisms in RIOT OS. Executed on off-the-shelf IoT hardware, we provide a comparative evaluation for basic NDN-style ICN [60], RICE [31]-like pulling, and reflexive forwarding [46]. This is the first practical evaluation of ICN over LoRa using a reliable MAC. Our results show that periodic polling in NDN works inefficiently when facing long and differing RTTs. RICE reduces polling overhead and exploits gateway knowledge, without violating ICN principles. Reflexive forwarding reflects sporadic data generation naturally. Combined with a local data push, it operates efficiently and enables lifetimes of >1 year for battery powered LoRa-ICN nodes.Comment: 12 pages, 7 figures, 2 table

    Part 1: acceptance test and administration of a farm of servers. Part 2: improving TCP performance in underwater wireless sensor networks

    Get PDF
    Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2017Abstract 1 During the last decades, companies and organizations have focused on how to provide to the end-users or clients with web services or applications to make them more closer and involved to the activity. Therefore, many enterprises through their direction of the IT service, propose varieties of applications that allow to the stakeholders to perform what they need. The aim of this report is to present what the application integration job is and to report the missions that I have been able to carry out such as application integration, application qualification, and acceptance tests. This represents in total: - 19 qualified applications, - 33 administrated serversResumo 1 Ao longo das últimas décadas, as empresas e as organizações concentraram-se na forma de fornecer aos usuários finais ou clientes, serviços Web ou aplicativos para torná-los mais próximos e envolvidos na actividade. Portanto, muitas empresas através da sua direcção do serviço de Tecnólogia da Informação TI, propõem variedades de aplicativos que permitem às partes interessadas realizar o que necessitam. O objectivo deste relatório é apresentar o que é o trabalho de integração de aplicativos e as missões que fui capaz de executar, como a integração de aplicativos, a qualificação de aplicativos e testes de aceitação. Isto representa no total: - 19 aplicações qualificadas, - 33 servidores administradosAbstract 2 Underwater wireless sensor networks (UWSNs) are becoming popular due to their important role in different applications, such as offshore search and underwater monitoring. However, the data transmission in this underwater environment is impacted by various aspects such as bandwidth usage limitation, surrounding noise and large acoustic propagation delays. Therefore, communication itself is an outstanding challenge. The well-known traditional transmission control protocol (TCP), one of the most used transport protocol on the internet, is not suitable to enable this technology. Even though TCP variants for the wireless network are not foolproof in an underwater environment, their use could probably be more difficult in such a multi-hop communication system. We have chosen Newreno for our study. This variant is a modern implementation that includes the four congestion control algorithms. These algorithms have proved to be effective when it comes to terrestrial networks which could be a basis for our study. In addition, Newreno is known for its algorithm of recovery of several segments lost within the same sending window. In this dissertation, we have conducted a general study of UWSN technology and examined methods to improve TCP performance in a multi-hop UWSN. And then, we propose Underwater-Newreno (U-Newreno) our enhanced version of Newreno to improve TCP performance in UWSN. U-Newreno consists of two major modifications: controlling the maximum size of the congestion window and the adaptation of the round trip time (RTT) timeout. The results of simulations carried out with the Aquasim simulator show improvements of performances in terms of gain of: packets delivery Retransmission ratio of packets delivery.Resumo 2 As redes de sensores sem fio subaquáticos (Underwater Wireless Sensor Networks- UWSN) estão-se a tornar cada vez mais populares devido à sua importância em diferentes aplicações, como a pesquisa offshore e monitoramento subaquático. No entanto, a transmissão de dados neste ambiente subaquático sofre devido a vários factores, como a limitação do uso da largura de banda, o ruído envolvente e grandes atrasos de propagação acústica. Portanto, a comunicação é um desafio problemático. O familiar transmission control protocol (TCP) tradicional, um dos protocolos de transporte mais utilizados na internet, não é adequado para habilitar esta tecnologia. Mesmo que as variantes TCP para a rede sem fio não sejam infalíveis num ambiente subaquático, o seu uso provavelmente pode ser mais difícil num sistema de comunicação de múltiplos saltos. Nós escolhemos o Newreno para o nosso estudo. Esta variante é uma implementação moderna que inclui os quatro algoritmos de controle de congestionamento. Estes algoritmos demonstraram a sua eficácia em redes terrestres que poderiam ser uma base para o nosso estudo. Além disso, Newreno é conhecido pelo seu algoritmo de recuperação de vários segmentos perdidos dentro da mesma janela de envio. Nesta dissertação, realizamos um estudo geral da tecnologia UWSN e examinamos métodos para melhorar o desempenho do TCP num UWSN de vários saltos. E então, propomos a U-Newreno (Underwater-Newreno), a nossa versão melhorada do Newreno para melhorar o desempenho do TCP no UWSN. O U-Newreno consiste em duas modificações principais: controlar o tamanho máximo da janela de congestionamento e a adaptação do tempo limite “Round Trip Time”(RTT). Os resultados das simulações realizadas com o simulador Aquasim mostram melhorias nos desempenhos em termos de ganho de: • entrega de pacotes • Taxa de retransmissão da entrega de pacotes
    corecore