176 research outputs found

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Object Counting with Deep Learning

    Get PDF
    This thesis explores various empirical aspects of deep learning or convolutional network based models for efficient object counting. First, we train moderately large convolutional networks on comparatively smaller datasets containing few hundred samples from scratch with conventional image processing based data augmentation. Then, we extend this approach for unconstrained, outdoor images using more advanced architectural concepts. Additionally, we propose an efficient, randomized data augmentation strategy based on sub-regional pixel distribution for low-resolution images. Next, the effectiveness of depth-to-space shuffling of feature elements for efficient segmentation is investigated for simpler problems like binary segmentation -- often required in the counting framework. This depth-to-space operation violates the basic assumption of encoder-decoder type of segmentation architectures. Consequently, it helps to train the encoder model as a sparsely connected graph. Nonetheless, we have found comparable accuracy to that of the standard encoder-decoder architectures with our depth-to-space models. After that, the subtleties regarding the lack of localization information in the conventional scalar count loss for one-look models are illustrated. At this point, without using additional annotations, a possible solution is proposed based on the regulation of a network-generated heatmap in the form of a weak, subsidiary loss. The models trained with this auxiliary loss alongside the conventional loss perform much better compared to their baseline counterparts, both qualitatively and quantitatively. Lastly, the intricacies of tiled prediction for high-resolution images are studied in detail, and a simple and effective trick of eliminating the normalization factor in an existing computational block is demonstrated. All of the approaches employed here are thoroughly benchmarked across multiple heterogeneous datasets for object counting against previous, state-of-the-art approaches

    Leveraging Overhead Imagery for Localization, Mapping, and Understanding

    Get PDF
    Ground-level and overhead images provide complementary viewpoints of the world. This thesis proposes methods which leverage dense overhead imagery, in addition to sparsely distributed ground-level imagery, to advance traditional computer vision problems, such as ground-level image localization and fine-grained urban mapping. Our work focuses on three primary research areas: learning a joint feature representation between ground-level and overhead imagery to enable direct comparison for the task of image geolocalization, incorporating unlabeled overhead images by inferring labels from nearby ground-level images to improve image-driven mapping, and fusing ground-level imagery with overhead imagery to enhance understanding. The ultimate contribution of this thesis is a general framework for estimating geospatial functions, such as land cover or land use, which integrates visual evidence from both ground-level and overhead image viewpoints

    Machine Learning based Models for Fresh Produce Yield and Price Forecasting for Strawberry Fruit

    Get PDF
    Building market price forecasting models of Fresh Produce (FP) is crucial to protect retailers and consumers from highly priced FP. However, the task of forecasting FP prices is highly complex due to the very short shelf life of FP, inability to store for long term and external factors like weather and climate change. This forecasting problem has been traditionally modelled as a time series problem. Models for grain yield forecasting and other non-agricultural prices forecasting are common. However, forecasting of FP prices is recent and has not been fully explored. In this thesis, the forecasting models built to fill this void are solely machine learning based which is also a novelty. The growth and success of deep learning, a type of machine learning algorithm, has largely been attributed to the availability of big data and high end computational power. In this thesis, work is done on building several machine learning models (both conventional and deep learning based) to predict future yield and prices of FP (price forecast of strawberries are said to be more difficult than other FP and hence is used here as the main product). The data used in building these prediction models comprises of California weather data, California strawberry yield, California strawberry farm-gate prices and a retailer purchase price data. A comparison of the various prediction models is done based on a new aggregated error measure (AGM) proposed in this thesis which combines mean absolute error, mean squared error and R^2 coefficient of determination. The best two models are found to be an Attention CNN-LSTM (AC-LSTM) and an Attention ConvLSTM (ACV-LSTM). Different stacking ensemble techniques such as voting regressor and stacking with Support vector Regression (SVR) are then utilized to come up with the best prediction. The experiment results show that across the various examined applications, the proposed model which is a stacking ensemble of the AC-LSTM and ACV-LSTM using a linear SVR is the best performing based on the proposed aggregated error measure. To show the robustness of the proposed model, it was used also tested for predicting WTI and Brent crude oil prices and the results proved consistent with that of the FP price prediction

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Development of Deep Learning Hybrid Models for Hydrological Predictions

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•œ ๋†’์€ ์ ์šฉ์„ฑ์„ ๊ฐ€์ง„ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ํŒŒํ”„๋ฆฌ์นด ๋Œ€์ƒ ์ ˆ์ฐจ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๋ฆผ์ƒ๋ฌผ์ž์›ํ•™๋ถ€, 2022. 8. ์†์ •์ต.Many agricultural challenges are entangled in a complex interaction between crops and the environment. As a simplifying tool, crop modeling is a process of abstracting and interpreting agricultural phenomena. Understanding based on this interpretation can play a role in supporting academic and social decisions in agriculture. Process-based crop models have solved the challenges for decades to enhance the productivity and quality of crop production; the remaining objectives have led to demand for crop models handling multidirectional analyses with multidimensional information. As a possible milestone to satisfy this goal, deep learning algorithms have been introduced to the complicated tasks in agriculture. However, the algorithms could not replace existing crop models because of the research fragmentation and low accessibility of the crop models. This study established a developmental protocol for a process-based crop model with deep learning methodology. Literature Review introduced deep learning and crop modeling, and it explained the reasons for the necessity of this protocol despite numerous deep learning applications for agriculture. Base studies were conducted with several greenhouse data in Chapters 1 and 2: transfer learning and U-Net structure were utilized to construct an infrastructure for the deep learning application; HyperOpt, a Bayesian optimization method, was tested to calibrate crop models to compare the existing crop models with the developed model. Finally, the process-based crop model with full deep neural networks, DeepCrop, was developed with an attention mechanism and multitask decoders for hydroponic sweet peppers (Capsicum annuum var. annuum) in Chapter 3. The methodology for data integrity showed adequate accuracy, so it was applied to the data in all chapters. HyperOpt was able to calibrate food and feed crop models for sweet peppers. Therefore, the compared models in the final chapter were optimized using HyperOpt. DeepCrop was trained to simulate several growth factors with environment data. The trained DeepCrop was evaluated with unseen data, and it showed the highest modeling efficiency (=0.76) and the lowest normalized root mean squared error (=0.18) than the compared models. With the high adaptability of DeepCrop, it can be used for studies on various scales and purposes. Since all methods adequately solved the given tasks and underlay the DeepCrop development, the established protocol can be a high throughput for enhancing accessibility of crop models, resulting in unifying crop modeling studies.๋†์—… ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋“ค์€ ์ž‘๋ฌผ๊ณผ ํ™˜๊ฒฝ์˜ ์ƒํ˜ธ์ž‘์šฉ ํ•˜์— ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ๋‹ค. ์ž‘๋ฌผ ๋ชจ๋ธ๋ง์€ ๋Œ€์ƒ์„ ๋‹จ์ˆœํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์จ, ๋†์—…์—์„œ ์ผ์–ด๋‚˜๋Š” ํ˜„์ƒ์„ ์ถ”์ƒํ™”ํ•˜๊ณ  ํ•ด์„ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋Œ€์ƒ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ๋†์—… ๋ถ„์•ผ์˜ ํ•™์ˆ ์  ๋ฐ ์‚ฌํšŒ์  ๊ฒฐ์ •์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ง€๋‚œ ์ˆ˜๋…„ ๊ฐ„ ์ ˆ์ฐจ ๊ธฐ๋ฐ˜ ์ž‘๋ฌผ ๋ชจ๋ธ์€ ๋†์—…์˜ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜์—ฌ ์ž‘๋ฌผ ์ƒ์‚ฐ์„ฑ ๋ฐ ํ’ˆ์งˆ์„ ์ฆ์ง„์‹œ์ผฐ์œผ๋ฉฐ, ํ˜„์žฌ ์ž‘๋ฌผ ๋ชจ๋ธ๋ง์— ๋‚จ์•„์žˆ๋Š” ๊ณผ์ œ๋“ค์€ ๋‹ค์ฐจ์› ์ •๋ณด๋ฅผ ๋‹ค๋ฐฉํ–ฅ์—์„œ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘๋ฌผ ๋ชจ๋ธ์„ ํ•„์š”๋กœ ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ง€์นจ์œผ๋กœ์จ, ๋ณต์žกํ•œ ๋†์—…์  ๊ณผ์ œ๋“ค์„ ๋ชฉํ‘œ๋กœ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋„์ž…๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๋‚ฎ์€ ๋ฐ์ดํ„ฐ ์™„๊ฒฐ์„ฑ ๋ฐ ๋†’์€ ์—ฐ๊ตฌ ๋‹ค์–‘์„ฑ ๋•Œ๋ฌธ์— ๊ธฐ์กด์˜ ์ž‘๋ฌผ ๋ชจ๋ธ๋“ค์„ ๋Œ€์ฒดํ•˜์ง€๋Š” ๋ชปํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•˜์—ฌ ์ ˆ์ฐจ ๊ธฐ๋ฐ˜ ์ž‘๋ฌผ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฐœ๋ฐœ ํ”„๋กœํ† ์ฝœ์„ ํ™•๋ฆฝํ•˜์˜€๋‹ค. Literature Review์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹๊ณผ ์ž‘๋ฌผ ๋ชจ๋ธ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ณ , ๋†์—…์œผ๋กœ์˜ ๋”ฅ๋Ÿฌ๋‹ ์ ์šฉ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์Œ์—๋„ ์ด ํ”„๋กœํ† ์ฝœ์ด ํ•„์š”ํ•œ ์ด์œ ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ์ œ1์žฅ๊ณผ 2์žฅ์—์„œ๋Š” ๊ตญ๋‚ด ์—ฌ๋Ÿฌ ์ง€์—ญ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ „์ด ํ•™์Šต ๋ฐ U-Net ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ ์šฉ์„ ์œ„ํ•œ ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ณ , ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์ธ HyperOpt๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ์กด ๋ชจ๋ธ๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ์‹œํ—˜์ ์œผ๋กœ WOFOST ์ž‘๋ฌผ ๋ชจ๋ธ์„ ๋ณด์ •ํ•˜๋Š” ๋“ฑ ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ3์žฅ์—์„œ๋Š” ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋ฐ ๋‹ค์ค‘ ์ž‘์—… ๋””์ฝ”๋”๋ฅผ ๊ฐ€์ง„ ์™„์ „ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง ์ ˆ์ฐจ ๊ธฐ๋ฐ˜ ์ž‘๋ฌผ ๋ชจ๋ธ์ธ DeepCrop์„ ์ˆ˜๊ฒฝ์žฌ๋ฐฐ ํŒŒํ”„๋ฆฌ์นด(Capsicum annuum var. annuum) ๋Œ€์ƒ์œผ๋กœ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์™„๊ฒฐ์„ฑ์„ ์œ„ํ•œ ๊ธฐ์ˆ ๋“ค์€ ์ ํ•ฉํ•œ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, ์ „์ฒด ์ฑ•ํ„ฐ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€๋‹ค. HyperOpt๋Š” ์‹๋Ÿ‰ ๋ฐ ์‚ฌ๋ฃŒ ์ž‘๋ฌผ ๋ชจ๋ธ๋“ค์„ ํŒŒํ”„๋ฆฌ์นด ๋Œ€์ƒ์œผ๋กœ ๋ณด์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ œ3์žฅ์˜ ๋น„๊ต ๋Œ€์ƒ ๋ชจ๋ธ๋“ค์— ๋Œ€ํ•ด HyperOpt๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. DeepCrop์€ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜๊ณ  ์—ฌ๋Ÿฌ ์ƒ์œก ์ง€ํ‘œ๋ฅผ ์˜ˆ์ธกํ•˜๋„๋ก ํ•™์Šต๋˜์—ˆ๋‹ค. ํ•™์Šต์— ์‚ฌ์šฉํ•˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šต๋œ DeepCrop๋ฅผ ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์ด ๋•Œ ๋น„๊ต ๋ชจ๋ธ๋“ค ์ค‘ ๊ฐ€์žฅ ๋†’์€ ๋ชจํ˜• ํšจ์œจ(EF=0.76)๊ณผ ๊ฐ€์žฅ ๋‚ฎ์€ ํ‘œ์ค€ํ™” ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(NRMSE=0.18)๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. DeepCrop์€ ๋†’์€ ์ ์šฉ์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ฒ”์œ„์™€ ๋ชฉ์ ์„ ๊ฐ€์ง„ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋ชจ๋“  ๋ฐฉ๋ฒ•๋“ค์ด ์ฃผ์–ด์ง„ ์ž‘์—…์„ ์ ์ ˆํžˆ ํ’€์–ด๋ƒˆ๊ณ  DeepCrop ๊ฐœ๋ฐœ์˜ ๊ทผ๊ฑฐ๊ฐ€ ๋˜์—ˆ์œผ๋ฏ€๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ํ™•๋ฆฝํ•œ ํ”„๋กœํ† ์ฝœ์€ ์ž‘๋ฌผ ๋ชจ๋ธ์˜ ์ ‘๊ทผ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํš๊ธฐ์ ์ธ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๊ณ , ์ž‘๋ฌผ ๋ชจ๋ธ ์—ฐ๊ตฌ์˜ ํ†ตํ•ฉ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.LITERATURE REVIEW 1 ABSTRACT 1 BACKGROUND 3 REMARKABLE APPLICABILITY AND ACCESSIBILITY OF DEEP LEARNING 12 DEEP LEARNING APPLICATIONS FOR CROP PRODUCTION 17 THRESHOLDS TO APPLY DEEP LEARNING TO CROP MODELS 18 NECESSITY TO PRIORITIZE DEEP-LEARNING-BASED CROP MODELS 20 REQUIREMENTS OF THE DEEP-LEARNING-BASED CROP MODELS 21 OPENING REMARKS AND THESIS OBJECTIVES 22 LITERATURE CITED 23 Chapter 1 34 Chapter 1-1 35 ABSTRACT 35 INTRODUCTION 37 MATERIALS AND METHODS 40 RESULTS 50 DISCUSSION 59 CONCLUSION 63 LITERATURE CITED 64 Chapter 1-2 71 ABSTRACT 71 INTRODUCTION 73 MATERIALS AND METHODS 75 RESULTS 84 DISCUSSION 92 CONCLUSION 101 LITERATURE CITED 102 Chapter 2 108 ABSTRACT 108 NOMENCLATURE 110 INTRODUCTION 112 MATERIALS AND METHODS 115 RESULTS 124 DISCUSSION 133 CONCLUSION 137 LITERATURE CITED 138 Chapter 3 144 ABSTRACT 144 INTRODUCTION 146 MATERIALS AND METHODS 149 RESULTS 169 DISCUSSION 182 CONCLUSION 187 LITERATURE CITED 188 GENERAL DISCUSSION 196 GENERAL CONCLUSION 201 ABSTRACT IN KOREAN 203 APPENDIX 204๋ฐ•

    Hyperspectral Imaging from Ground Based Mobile Platforms and Applications in Precision Agriculture

    Get PDF
    This thesis focuses on the use of line scanning hyperspectral sensors on mobile ground based platforms and applying them to agricultural applications. First this work deals with the geometric and radiometric calibration and correction of acquired hyperspectral data. When operating at low altitudes, changing lighting conditions are common and inevitable, complicating the retrieval of a surface's reflectance, which is solely a function of its physical structure and chemical composition. Therefore, this thesis contributes the evaluation of an approach to compensate for changes in illumination and obtain reflectance that is less labour intensive than traditional empirical methods. Convenient field protocols are produced that only require a representative set of illumination and reflectance spectral samples. In addition, a method for determining a line scanning camera's rigid 6 degree of freedom (DOF) offset and uncertainty with respect to a navigation system is developed, enabling accurate georegistration and sensor fusion. The thesis then applies the data captured from the platform to two different agricultural applications. The first is a self-supervised weed detection framework that allows training of a per-pixel classifier using hyperspectral data without manual labelling. The experiments support the effectiveness of the framework, rivalling classifiers trained on hand labelled training data. Then the thesis demonstrates the mapping of mango maturity using hyperspectral data on an orchard wide scale using efficient image scanning techniques, which is a world first result. A novel classification, regression and mapping pipeline is proposed to generate per tree mango maturity averages. The results confirm that maturity prediction in mango orchards is possible in natural daylight using a hyperspectral camera, despite complex micro-illumination-climates under the canopy

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map.ย TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU.ย FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles.ย Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps.ย This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality
    • โ€ฆ
    corecore