8 research outputs found

    Algorithms and architectures for the multirate additive synthesis of musical tones

    Get PDF
    In classical Additive Synthesis (AS), the output signal is the sum of a large number of independently controllable sinusoidal partials. The advantages of AS for music synthesis are well known as is the high computational cost. This thesis is concerned with the computational optimisation of AS by multirate DSP techniques. In note-based music synthesis, the expected bounds of the frequency trajectory of each partial in a finite lifecycle tone determine critical time-invariant partial-specific sample rates which are lower than the conventional rate (in excess of 40kHz) resulting in computational savings. Scheduling and interpolation (to suppress quantisation noise) for many sample rates is required, leading to the concept of Multirate Additive Synthesis (MAS) where these overheads are minimised by synthesis filterbanks which quantise the set of available sample rates. Alternative AS optimisations are also appraised. It is shown that a hierarchical interpretation of the QMF filterbank preserves AS generality and permits efficient context-specific adaptation of computation to required note dynamics. Practical QMF implementation and the modifications necessary for MAS are discussed. QMF transition widths can be logically excluded from the MAS paradigm, at a cost. Therefore a novel filterbank is evaluated where transition widths are physically excluded. Benchmarking of a hypothetical orchestral synthesis application provides a tentative quantitative analysis of the performance improvement of MAS over AS. The mapping of MAS into VLSI is opened by a review of sine computation techniques. Then the functional specification and high-level design of a conceptual MAS Coprocessor (MASC) is developed which functions with high autonomy in a loosely-coupled master- slave configuration with a Host CPU which executes filterbanks in software. Standard hardware optimisation techniques are used, such as pipelining, based upon the principle of an application-specific memory hierarchy which maximises MASC throughput

    Serial-data computation in VLSI

    Get PDF

    Signal processing architectures for automotive high-resolution MIMO radar systems

    Get PDF
    To date, the digital signal processing for an automotive radar sensor has been handled in an efficient way by general purpose signal processors and microcontrollers. However, increasing resolution requirements for automated driving on the one hand, as well as rapidly growing numbers of manufactured sensors on the other hand, can provoke a paradigm change in the near future. The design and development of highly specialized hardware accelerators could become a viable option - at least for the most demanding processing steps with data rates of several gigabits per second. In this work, application-specific signal processing architectures for future high-resolution multiple-input and multiple-output (MIMO) radar sensors are designed, implemented, investigated and optimized. A focus is set on real-time performance such that even sophisticated algorithms can be computed sufficiently fast. The full processing chain from the received baseband signals to a list of detections is considered, comprising three major steps: Spectrum analysis, target detection and direction of arrival estimation. The developed architectures are further implemented on a field-programmable gate array (FPGA) and important measurements like resource consumption, power dissipation or data throughput are evaluated and compared with other examples from literature. A substantial dataset, based on more than 3600 different parametrizations and variants, has been established with the help of a model-based design space exploration and is provided as part of this work. Finally, an experimental radar sensor has been built and is used under real-world conditions to verify the effectiveness of the proposed signal processing architectures.Bisher wurde die digitale Signalverarbeitung für automobile Radarsensoren auf eine effiziente Art und Weise von universell verwendbaren Mikroprozessoren bewältigt. Jedoch können steigende Anforderungen an das Auflösungsvermögen für hochautomatisiertes Fahren einerseits, sowie schnell wachsende Stückzahlen produzierter Sensoren andererseits, einen Paradigmenwechsel in naher Zukunft bewirken. Die Entwicklung von hochgradig spezialisierten Hardwarebeschleunigern könnte sich als eine praktikable Alternative etablieren - zumindest für die anspruchsvollsten Rechenschritte mit Datenraten von mehreren Gigabits pro Sekunde. In dieser Arbeit werden anwendungsspezifische Signalverarbeitungsarchitekturen für zukünftige, hochauflösende, MIMO Radarsensoren entworfen, realisiert, untersucht und optimiert. Der Fokus liegt dabei stets auf der Echtzeitfähigkeit, sodass selbst anspruchsvolle Algorithmen in einer ausreichend kurzen Zeit berechnet werden können. Die komplette Signalverarbeitungskette, beginnend von den empfangenen Signalen im Basisband bis hin zu einer Liste von Detektion, wird in dieser Arbeit behandelt. Die Kette gliedert sich im Wesentlichen in drei größere Teilschritte: Spektralanalyse, Zieldetektion und Winkelschätzung. Des Weiteren werden die entwickelten Architekturen auf einem FPGA implementiert und wichtige Kennzahlen wie Ressourcenverbrauch, Stromverbrauch oder Datendurchsatz ausgewertet und mit anderen Beispielen aus der Literatur verglichen. Ein umfangreicher Datensatz, welcher mehr als 3600 verschiedene Parametrisierungen und Varianten beinhaltet, wurde mit Hilfe einer modellbasierten Entwurfsraumexploration erstellt und ist in dieser Arbeit enthalten. Schließlich wurde ein experimenteller Radarsensor aufgebaut und dazu benutzt, die entworfenen Signalverarbeitungsarchitekturen unter realen Umgebungsbedingungen zu verifizieren

    The detection of unknown waveforms in ESM receivers: FFT-based real-time solutions

    Get PDF
    Radars and airborne electronic support measures (ESMs) systems are locked in a tactical battle to detect each other whilst remaining undetected. Traditionally, the ESM system has a range advantage. Low probability of intercept (LPI) waveform designers are, however, more heavily exploiting the matched filter radar advantage and hence degrading the range advantage. There have been literature and internal, SELEX Galileo proposals to regain some ESM processing gain of low probability of intercept (LPI) waveforms. This study, however, has sought digital signal processing (DSP) solutions which are: (1) computationally simple; (2) backward-compatible with existing SELEX Galileo digital receivers (DRxs) and (3) have low resource requirements. The two contributions are complementary and result in a detector which is suitable for detection of most radar waveforms. The first contribution is the application of spatially variant apodization (SVA) in a detection role. Compared to conventional window functions, SVA was found to be beneficial for the detection of sinusoidal radar waveforms as it surpassed the fixed window function detectors in all scenarios tested. The second contribution shows by simulation that simple spectral smoothing techniques improved DRx LPI detection capability to a level similar to more complicated non-parametric spectral estimators and far in excess of the conventional (modified) periodogram. The DSP algorithms were implemented using model-based design (MBD). The implication is that a detector with improved conventional and LPI waveform detection capability can be created from the intellectual property (IP). Estimates of the improvement in SELEX Galileo DRx system detection range are provided in the conclusion

    Modulation, Coding, and Receiver Design for Gigabit mmWave Communication

    Get PDF
    While wireless communication has become an ubiquitous part of our daily life and the world around us, it has not been able yet to deliver the multi-gigabit throughput required for applications like high-definition video transmission or cellular backhaul communication. The throughput limitation of current wireless systems is mainly the result of a shortage of spectrum and the problem of congestion. Recent advancements in circuit design allow the realization of analog frontends for mmWave frequencies between 30GHz and 300GHz, making abundant unused spectrum accessible. However, the transition to mmWave carrier frequencies and GHz bandwidths comes with new challenges for wireless receiver design. Large variations of the channel conditions and high symbol rates require flexible but power-efficient receiver designs. This thesis investigates receiver algorithms and architectures that enable multi-gigabit mmWave communication. Using a system-level approach, the design options between low-power time-domain and power-hungry frequency-domain signal processing are explored. The system discussion is started with an analysis of the problem of parameter synchronization in mmWave systems and its impact on system design. The proposed synchronization architecture extends known synchronization techniques to provide greater flexibility regarding the operating environments and for system efficiency optimization. For frequency-selective environments, versatile single-carrier frequency domain equalization (SC-FDE) offers not only excellent channel equalization, but also the possibility to integrate additional baseband tasks without overhead. Hence, the high initial complexity of SC-FDE needs to be put in perspective to the complexity savings in the other parts of the baseband. Furthermore, an extension to the SC-FDE architecture is proposed that allows an adaptation of the equalization complexity by switching between a cyclic-prefix mode and a reduced block length overlap-save mode based on the delay spread. Approaching the problem of complexity adaptation from time-domain, a high-speed hardware architecture for the delayed decision feedback sequence estimation (DDFSE) algorithm is presented. DDFSE uses decision feedback to reduce the complexity of the sequence estimation and allows to set the system performance between the performance of full maximum-likelihood detection and pure decision feedback equalization. An implementation of the DDFSE architecture is demonstrated as part of an all-digital IEEE802.11ad baseband ASIC manufactured in 40nm CMOS. A flexible architecture for wideband mmWave receivers based on complex sub-sampling is presented. Complex sub-sampling combines the design advantages of sub-sampling receivers with the flexibility of direct-conversion receivers using a single passive component and a digital compensation scheme. Feasibility of the architecture is proven with a 16Gb/s hardware demonstrator. The demonstrator is used to explore the potential gain of non-equidistant constellations for high-throughput mmWave links. Specifically crafted amplitude phase-shift keying (APSK) modulation achieve 1dB average mutual information (AMI) advantage over quadrature amplitude modulation (QAM) in simulation and on the testbed hardware. The AMI advantage of APSK can be leveraged for a practical transmission using Polar codes which are trained specifically for the constellation

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore