1,062 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    MAC Centered Cooperation - Synergistic Design of Network Coding, Multi-Packet Reception, and Improved Fairness to Increase Network Throughput

    Get PDF
    We design a cross-layer approach to aid in develop- ing a cooperative solution using multi-packet reception (MPR), network coding (NC), and medium access (MAC). We construct a model for the behavior of the IEEE 802.11 MAC protocol and apply it to key small canonical topology components and their larger counterparts. The results obtained from this model match the available experimental results with fidelity. Using this model, we show that fairness allocation by the IEEE 802.11 MAC can significantly impede performance; hence, we devise a new MAC that not only substantially improves throughput, but provides fairness to flows of information rather than to nodes. We show that cooperation between NC, MPR, and our new MAC achieves super-additive gains of up to 6.3 times that of routing with the standard IEEE 802.11 MAC. Furthermore, we extend the model to analyze our MAC's asymptotic and throughput behaviors as the number of nodes increases or the MPR capability is limited to only a single node. Finally, we show that although network performance is reduced under substantial asymmetry or limited implementation of MPR to a central node, there are some important practical cases, even under these conditions, where MPR, NC, and their combination provide significant gains

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi
    • …
    corecore