10,428 research outputs found

    MRI-only based radiotherapy treatment planning for the rat brain on a Small Animal Radiation Research Platform (SARRP)

    Get PDF
    Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 mu s (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Simultaneous multislice acquisition with multi-contrast segmented EPI for separation of signal contributions in dynamic contrast-enhanced imaging

    Get PDF
    We present a method to efficiently separate signal in magnetic resonance imaging (MRI) into a base signal S0, representing the mainly T1-weighted component without T2*-relaxation, and its T2*-weighted counterpart by the rapid acquisition of multiple contrasts for advanced pharmacokinetic modelling. This is achieved by incorporating simultaneous multislice (SMS) imaging into a multi-contrast, segmented echo planar imaging (EPI) sequence to allow extended spatial coverage, which covers larger body regions without time penalty. Simultaneous acquisition of four slices was combined with segmented EPI for fast imaging with three gradient echo times in a preclinical perfusion study. Six female domestic pigs, German-landrace or hybrid-form, were scanned for 11 minutes respectively during administration of gadolinium-based contrast agent. Influences of reconstruction methods and training data were investigated. The separation into T1- and T2*-dependent signal contributions was achieved by fitting a standard analytical model to the acquired multi-echo data. The application of SMS yielded sufficient temporal resolution for the detection of the arterial input function in major vessels, while anatomical coverage allowed perfusion analysis of muscle tissue. The separation of the MR signal into T1- and T2*-dependent components allowed the correction of susceptibility related changes. We demonstrate a novel sequence for dynamic contrast-enhanced MRI that meets the requirements of temporal resolution (Δt < 1.5 s) and image quality. The incorporation of SMS into multi-contrast, segmented EPI can overcome existing limitations of dynamic contrast enhancement and dynamic susceptibility contrast methods, when applied separately. The new approach allows both techniques to be combined in a single acquisition with a large spatial coverage
    corecore