22,108 research outputs found

    DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion

    Full text link
    Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques; however, it continues to face challenges such as mode collapse, training instability, and low-quality output in cases of datasets with high intra-class variation. Furthermore, most GANs often converge in larger iterations, resulting in poor iteration efficacy in training procedures. While Diffusion-GAN has shown potential in generating realistic samples, it has a critical limitation in generating class-conditional samples. To overcome these limitations, we propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process. Our method consists of three unique networks: a discriminator, a generator, and a classifier. During the training process, Gaussian-mixture noises are injected into the two noise-aware networks, the discriminator and the classifier, in distinct ways. This noisy data helps to prevent overfitting by gradually introducing more challenging tasks, leading to improved model performance. As a result, our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance. We evaluated our method using the AFHQ, Food-101, and CIFAR-10 datasets and observed superior results across metrics such as FID, KID, Precision, and Recall score compared with comparison models, highlighting the effectiveness of our approach

    Radio Galaxy Classification with wGAN-Supported Augmentation

    Full text link
    Novel techniques are indispensable to process the flood of data from the new generation of radio telescopes. In particular, the classification of astronomical sources in images is challenging. Morphological classification of radio galaxies could be automated with deep learning models that require large sets of labelled training data. Here, we demonstrate the use of generative models, specifically Wasserstein GANs (wGAN), to generate artificial data for different classes of radio galaxies. Subsequently, we augment the training data with images from our wGAN. We find that a simple fully-connected neural network for classification can be improved significantly by including generated images into the training set.Comment: 10 pages, 6 figures; accepted to ml.astro; v2: matches published versio

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table
    corecore